Regulatory Requirements for Use of Transgenic Plants in the Greenhouse

Frank A. Cantone, Ph.D., CBSP
Biological Safety Officer
Environmental Health & Safety

Agenda

- Introduction
- Guidance and Oversight
- Biosafety Levels
- Containment

Introduction

- NIH Guidelines specifies practices for:
 - rDNA molecules
 - Organisms and viruses that contain rDNA
- rDNA molecules are:
 - Molecules constructed outside cells by joining DNA segments to DNA molecules that replicate in a living cell
 - Molecules that result from replication of those above

Introduction

- Transgenic or genetically modified organisms (GMO)
 - Plants
 - Plant-associated organisms
- Greenhouses
- Guidance is not abundant
Guidance and Oversight

- NIH Guidelines
 - Risk assessment
 - Containment
 - Work practices
 - Facilities
- Although advisory, compliance=funding!!
- Sections III-E-2 and D-5 “Experiments Involving Whole Plants”
 - Genetically-modified whole plants
 - Genetically-modified microorganisms

Guidance and Oversight

- Appendix P- “Physical and Biological Containment for Recombinant DNA Research Involving Plants”
 - Specifies physical and biological containment, and practices suitable for greenhouse
 - Biosafety levels
 - Plants include:
 - Vascular plants including crops, ornamentals, and forest species
 - Mosses, liverworts, macroscopic algae

Guidance and Oversight

- Plant-associated microorganisms
 - Fungi, bacteria, viruses
 - Benign, beneficial (mycorrhizae, Rhizobium), or pests
- Plant-associated animals or arthropods
 - Invertebrate vectors
 - Pests
 - Nematodes

Guidance and Oversight

- Other Federal agencies
 - USDA/APHIS
 - Protect US agriculture
 - Any introduction of GMOs
 - EPA
 - Plants producing pesticidal substances (e.g., Bt)
 - Novel microbes for commercial use (e.g., pollutant degrading bacteria)
 - FDA
 - Engineered for human and animal consumption
 - Human and veterinary drugs
Guidance and Oversight

• Institutional Biosafety Committee (formerly the rDNA Committee)
 – Membership with NIH
 – At least five members including two non-affiliated members
 – CU Faculty and Staff with various expertise from different fields
 – Currently, six members with plant biology or plant pathology experience

• What does the IBC do?
 – Review rDNA research and use of biological agents and toxins
 – Evaluate personnel, facilities, and procedures
 – Recommend policies to guide principal investigators and EH&S in carrying out the University's Biosafety Program
 – Maintain documentation and communicate with NIH

Guidance and Oversight

• Principal investigator
 – Ultimate responsibility
 – Submit Memorandum of Understanding and Agreement (MUA)
 – Determine appropriate containment and develop protocols (e.g., greenhouse practices manual)
 – Training and oversight of personnel
 – Communicate with the lab and greenhouse staff????

• Greenhouse staff
 – Become familiar with the project
 – What’s transgenic and what’s not
 – Know what’s in the greenhouse practices manual
 – Management and disposal practices
 – Awareness and reporting
Plant Biosafety Levels

• Combination of practices, physical, and biological containment conditions
• Increasing levels of environmental protection and containment
• Avoid unintentional transmission or release
• No threat to humans or animals
• Minimize ecosystem effects outside of facility
• BL1-P through BL4-P

Factors to consider

• Recipient organism
 - Transmission, detrimental impact, outcrossing
• Nature of introduced DNA
 - Pathogens, exotic agents
• Compatible species in local environment
 - Wild or weedy species
• Procedures and practices
 - Movement of materials, containment

Plant Biosafety Levels

• BL1-P
 - Low level of containment
 - Low environmental risk (i.e., inability to survive and spread)
 - Plant-associated microorganisms not easily disseminated- minimal impact
 - e.g., not noxious weeds, cannot outcross, plant transformation with Agrobacterium

• BL2-P
 - Higher level of containment
 - Recognized potential for rapid and widespread dissemination
 - Some environmental impact
 - Capable of interbreeding with weeds or related species
Plant Biosafety Levels

- BL2-P
 - Complete genome of non-exotic infectious agent
 - Plant-associated microbes manageable environmental harm
 - Exotic microbes little potential for impact on ecosystems
 - Plant-associated insects no serious ecosystem impact

Plant Biosafety Levels

- BL3-P
 - Significant impact on environment
 - Exotic infectious agents detrimental to environment
 - Vertebrate toxins

Containment

- Protect the environment, not the researcher
- Risk assessment
 - Organism
 - Geographic/ecologic setting
 - Mechanical barriers
 - Selected practices
 - Consequences and likelihood of release

Containment

- Basic Principles
 - Avoid transmission or release
 - Prevent introduction and establishment of organism in new ecosystem
 - Minimize impact on organisms and ecosystems outside of facility
 - Avoid inadvertent spread of serious pathogen
- Achieved through biological methods, physical barriers, and management practices
Biological Containment

- Works in conjunction with Biosafety Levels
- Highly effective
- Can be used to lower physical containment or Biosafety Levels
- Reproductive, spatial, or temporal

Biological Containment

- Plants- minimize dissemination of pollen or seed
 - Harvest material prior to reproductive stage
 - Cover reproductive structures
 - Use male sterile lines
 - Cross-fertile plants not growing or flowering
 - Time, distance of experimental plants
 - Localize engineered genes in non-reproductive parts

Biological Containment

- Microorganisms- minimize dissemination
 - Genetic attenuation
 - Eliminate vectors
 - Limit production of aerosols during inoculations
 - Obligate association with the plant host
 - Distance between infected and susceptible hosts

Physical Containment

- BL1-P
 - Access at discretion of greenhouse director
 - Read and follow BL1-P practices and procedures; appropriate for organisms
 - Record of experiments currently in progress

- BL2-P
 - Access limited to individuals directly involved with experiments
 - Read and follow BL2-P practices and procedures; appropriate for organisms
 - Record of experiments currently in progress, and organisms brought into or out of facility
Physical Containment

<table>
<thead>
<tr>
<th>BL1-P</th>
<th>BL2-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Inactivate organisms before disposal</td>
<td></td>
</tr>
<tr>
<td>- Control undesired species</td>
<td></td>
</tr>
<tr>
<td>- Contain arthropods and other motile organisms in appropriate cages, and minimize escape from greenhouse</td>
<td></td>
</tr>
</tbody>
</table>

Experiments requiring lower containment may be conducted concurrently; all under BL1-P practices

- Floor may be composed of gravel or other porous material
- Screens are recommended
- No personal protective equipment required

Physical Containment

<table>
<thead>
<tr>
<th>BL2-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Principal investigator shall report inadvertent release or spill</td>
</tr>
<tr>
<td>- Decontamination of run-off water not necessarily required, but</td>
</tr>
<tr>
<td>- Periodically treat gravel to eliminate trapped organisms</td>
</tr>
<tr>
<td>- Transfer transgenic material in closed, secondary containment</td>
</tr>
</tbody>
</table>

Appropriate signage

- Name of responsible individual, plants in use, special requirements, GMO vs. non-GMO
- If risk to human health- universal biohazard sign
- Indicate presence of organisms that can adversely impact ecosystems

<table>
<thead>
<tr>
<th>BL2-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Experiments requiring lower containment may be conducted concurrently; all under BL2-P practices</td>
</tr>
<tr>
<td>- Concrete floor recommended; gravel under benches acceptable</td>
</tr>
<tr>
<td>- Screens are required</td>
</tr>
<tr>
<td>- No personal protective equipment required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BL2-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Appropriate signage</td>
</tr>
<tr>
<td>- Name of responsible individual, plants in use, special requirements, GMO vs. non-GMO</td>
</tr>
<tr>
<td>- If risk to human health- universal biohazard sign</td>
</tr>
<tr>
<td>- Indicate presence of organisms that can adversely impact ecosystems</td>
</tr>
</tbody>
</table>
Physical Containment

- BL2-P
 - Autoclave is available
 - Construct fans to minimize ingress of arthropods

Research with Restricted Pathogens

- Agricultural Bioterrorism Protection Act of 2002: Possession, Use and Transfer of Biological Agents and Toxins, 7 CFR 331
- Select Agents- threats to plant health and plant products
- Registration of entities, e.g., universities, industries
 ▲ DOJ/FBI approval for SA handlers
 ▲ Biosecurity, safety, emergency response, etc.
 ▲ Recordkeeping for inventories, access, etc.
 ▲ Must contact EH&S!!!
 ▲ http://www.aphis.usda.gov/ppq/permits/agr_bioterrorism

- Liberobacter africanus
- Liberobacter asiaticus
- Peronosclerospora philippinesis
- Phakospsora pachyrhizi
- Plum pox potyvirus
- Ralstonia solanacearum, race 3, biovar 2
- Sclerophthora rayssiae var. zeae
- Xanthomonas endobioticum
- Xanthomonas oryzae pv. oryzicola
- Xylella fastidiosa (citrus variegated chlorosis strain)
Summary

- Transgenic plants and associated organisms are commonly used.
- Environmental protection is the goal.
- Guidelines and risk assessment direct appropriate Biosafety Levels.
- Biological and physical containment.

Resources

- NIH Guidelines, Appendix P: “Physical and Biological Containment for Recombinant DNA Research Involving Plants”
 http://www4.od.nih.gov/oba/rac/guidelines_02/Appendix_P.htm

- A Practical Guide to Containment- Greenhouse Research with Transgenic Plants and Microbes
 http://www.isb.vt.edu/cfdocs/greenhouse_manual.cfm

- Guidelines for Handling Transgenic Plants and Associated Organisms
 http://www2.fpm.wisc.edu/biosafety/Base/PlantContainment.htm