<table>
<thead>
<tr>
<th>Número</th>
<th>Autor(es)</th>
<th>Año</th>
<th>Título</th>
<th>Revista</th>
<th>Volumen</th>
<th>Página(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Aguilera, M., M. Querci</td>
<td>2009</td>
<td>Assessing Copy Number of MON 810 Integrations in Commercial Seed Maize Varieties by S' Event-Specific Real-Time PCR Validated Method Coupled to 2 AAC'T Analysis</td>
<td>Food Analytical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ahmed, F. E.</td>
<td>2002</td>
<td>Detection of genetically modified organisms in foods.</td>
<td>TRENDS in Biotechnology</td>
<td>215-223</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Alcalde</td>
<td>2003</td>
<td>Co-existence of GM maize in Spainint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ancel, V. r., G. Bellocci</td>
<td>2007</td>
<td>GMO sampling strategies in the food and feed chain.</td>
<td>FEMS microbiology ecology</td>
<td>600-610</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Andersen, J. T. n., T. Schärer</td>
<td>2001</td>
<td>Using inactivated microbial biomass as fertilizer: the fate of antibiotic resistance genes in the environment Research in Microbiology 152(9): 823-833</td>
<td>Research in Microbiology</td>
<td>823-833</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Azadi, H. and P. Ho</td>
<td>2007</td>
<td>Genetically modified and organic crops in developing countries: A review of options for food security</td>
<td>Biotechnology Advances</td>
<td>160-168</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Babendreier, D., D. Joller</td>
<td>2007</td>
<td>Bacterial community structures in honeybee intestines and their response to two insecticidal proteins</td>
<td>FEMS microbiology ecology</td>
<td>600-610</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Barnett, J., A. McComcon</td>
<td>2011</td>
<td>Development of strategies for effective communication of food risks and benefits across Europe: Design and conceptual framework of the FoodRisk project</td>
<td>BMC public health</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>N. Barrera-Bassols, M. ASTIER, QOYEB SCHMIDT</td>
<td>2009</td>
<td>Saberes locales y defensa de la agrobiodiversidad: maíces nativos vs. maíces transgénicos en México</td>
<td>Papelles de relaciones ecosociales y cambio global</td>
<td>107</td>
<td>77</td>
</tr>
<tr>
<td>12</td>
<td>Beintema, N. M. and G.-J. Stads</td>
<td>2008</td>
<td>Measuring agricultural research investments: a revised global picture</td>
<td>ASTI Background Note, Agricultural Science and Technology Indicators Initiative,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Benbrook</td>
<td>2012</td>
<td>Impacts of genetically engineered crops on pesticide use in the US—the first sixteen years</td>
<td>Environmental Sciences Europe</td>
<td>24</td>
<td>1-13</td>
</tr>
<tr>
<td>14</td>
<td>Bethwell, C., F. Graef</td>
<td>2007</td>
<td>Prioritizing GMO monitoring sites in dynamic cultivation systems and their environment—a conceptual on-farm approach</td>
<td>Theorie in der Ökologie</td>
<td>16</td>
<td>39-44</td>
</tr>
<tr>
<td>15</td>
<td>Bitocchi, E., L. Nanni</td>
<td>2009</td>
<td>Introgression from modern hybrid varieties into landrace populations of maize (Zea mays ssp. mays L.) in central Italy</td>
<td>Molecular Ecology</td>
<td>18(4)</td>
<td>603-621</td>
</tr>
<tr>
<td>16</td>
<td>Blanco, C. A., M. Portilla</td>
<td>2001</td>
<td>Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis</td>
<td>Southwestern Entomologist</td>
<td>35</td>
<td>409-415</td>
</tr>
<tr>
<td>17</td>
<td>Bonfiri, L., P. Heinze,</td>
<td>2001</td>
<td>Review of GMO detection and quantification techniques, final version</td>
<td>Food Products and Consumer Goods Unit</td>
<td>1-21020</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Bravo, A., S. Likitvivatanavong</td>
<td>2012</td>
<td>Bacillus thuringiensis: a story of a successful bioinsecticide</td>
<td>Insect biochemistry and molecular biology</td>
<td>423-431</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Breckling, B. and R. Verhoeven</td>
<td>2010</td>
<td>Large-area effects of GM-crop cultivation</td>
<td>Peter Lang Publishing Group in association with GSE Research</td>
<td>71-96(28)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Bubela, T., M. C. Nisbet</td>
<td>2009</td>
<td>Science communication reconsidered</td>
<td>Nature biotechnology</td>
<td>27(6)</td>
<td>514-518</td>
</tr>
<tr>
<td>21</td>
<td>Burachik, M. s.</td>
<td>2009</td>
<td>Regulation of GM crops in Argentina. GM Crops and Food</td>
<td>Biotechnology in Agriculture and the Food Chain</td>
<td>3(1)</td>
<td>48-51.</td>
</tr>
<tr>
<td>22</td>
<td>Burke, D., C.‘There’</td>
<td>2012</td>
<td>There’s a long, long trail a-winding: The complexities of GM foods regulation, a cautionary tale from the UK</td>
<td>GM Crops and Food: Biotechnology in Agriculture and the Food Chain</td>
<td>3(1)</td>
<td>30-39</td>
</tr>
<tr>
<td>23</td>
<td>Cardona, C. A., J. A. Quintero,</td>
<td>2001</td>
<td>Production of bioethanol from sugarcane bagasse: status and perspectives</td>
<td>Bioresource Technology</td>
<td>101</td>
<td>4754-4766</td>
</tr>
<tr>
<td>24</td>
<td>Chassy, B., M. Egmin</td>
<td>2008</td>
<td>Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology</td>
<td>Comprehensive Reviews in Food Science and Food Safety</td>
<td>7(1)</td>
<td>50-113</td>
</tr>
<tr>
<td>25</td>
<td>Chen, M.-F. and H.-L. Li</td>
<td>2007</td>
<td>The consumer's attitude toward genetically modified foods in Taiwan</td>
<td>Food Quality and preference</td>
<td>18(4)</td>
<td>662-674</td>
</tr>
<tr>
<td>26</td>
<td>Chen, M., J.-Z. Zhao</td>
<td>2008</td>
<td>A critical assessment of the effects of Bt transgenic plants on parasitoids</td>
<td>PLoS One</td>
<td>3(5)</td>
<td>e2284</td>
</tr>
<tr>
<td>27</td>
<td>Chen, R., G. I. Mias</td>
<td>2008</td>
<td>Personal omics profiling reveals dynamic molecular and medical phenotypes</td>
<td>Cell</td>
<td>148(6)</td>
<td>1293-1307</td>
</tr>
<tr>
<td>Page</td>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Journal/Publication</td>
<td>Volume/Issue</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>29</td>
<td>Choi, E. K</td>
<td>2009</td>
<td>Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than those of conventional lines</td>
<td>Transgenic research</td>
<td>19(3)</td>
<td>383-391</td>
</tr>
<tr>
<td>30</td>
<td>Coll, A., A. Nabul</td>
<td>2009</td>
<td>Structural equation modelling of consumer acceptance of genetically modified (GM) food in the Mediterranean Europe: a cross-country study</td>
<td>Food Quality and Preference</td>
<td>20(6)</td>
<td>399-409</td>
</tr>
<tr>
<td>31</td>
<td>Costa-Font, M. and J. M. Gil</td>
<td>2009</td>
<td>An overview of general features of risk assessments of genetically modified crops</td>
<td>Euphytica</td>
<td>164(3)</td>
<td>853-880</td>
</tr>
<tr>
<td>32</td>
<td>Craig, W., M. Teplitz</td>
<td>1999</td>
<td>The dilemma of dual use biological research: Polish perspective</td>
<td>Science and engineering ethics</td>
<td>16(1)</td>
<td>99-110</td>
</tr>
<tr>
<td>33</td>
<td>Darlington Jr, P. J.</td>
<td>1972</td>
<td>Competition, competitive repulsion, and coexistence</td>
<td>Proceedings of the National Academy of Sciences</td>
<td>69(11)</td>
<td>3151-3155</td>
</tr>
<tr>
<td>34</td>
<td>Debode, F., E. Janssen</td>
<td>2013</td>
<td>Development of 10 new screening PCR assays for GMO detection targeting promoters (pFMV, pNOS, pSSuAra, pTA29, pUIb, pPice actin) and terminators (35S, 1E8, IOCS, tg7)</td>
<td>European Food Research and Technology</td>
<td>52-59.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Diamand</td>
<td>1999</td>
<td>Focus: Genetically modified organisms and monitoring</td>
<td>Journal of Environmental Monitoring</td>
<td>1</td>
<td>108N-110N</td>
</tr>
<tr>
<td>37</td>
<td>Dolezel, M., M. Miklau</td>
<td>2009</td>
<td>Standardising the environmental risk assessment of genetically modified plants in the EU</td>
<td>BMC Public Health</td>
<td>12</td>
<td>326</td>
</tr>
<tr>
<td>38</td>
<td>Duc, C., W. Nentwig</td>
<td>2000</td>
<td>No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community</td>
<td>A Field Study PloS one</td>
<td>6(10)</td>
<td>e25014</td>
</tr>
<tr>
<td>39</td>
<td>Dunwell, J. M.</td>
<td>2000</td>
<td>Transgenic approaches to crop improvement</td>
<td>Journal of Experimental Botany</td>
<td>51</td>
<td>487-496</td>
</tr>
<tr>
<td>40</td>
<td>Durai, S., M. Mani</td>
<td>2005</td>
<td>Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells</td>
<td>Nucleic acids research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Edgerton, M. D., J. Fridgen</td>
<td>2007</td>
<td>Transgenic insect resistance traits increase corn yield and yield stability</td>
<td>Nature Biotechnology</td>
<td>30</td>
<td>493-496.</td>
</tr>
<tr>
<td>44</td>
<td>Ervin, D. E., Y. Carriere</td>
<td>2010</td>
<td>The impact of genetically engineered crops on farm sustainability in the United States</td>
<td>National Research Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Eschenbach, C., B. Breckling</td>
<td>2010</td>
<td>Potential GM-maize cropping in Schleswig-Holstein II: model and GIS based approaches to estimate the GM-share in conventional maize yield</td>
<td>Large-area effects of GM-crop cultivation</td>
<td>16</td>
<td>51-55</td>
</tr>
<tr>
<td>46</td>
<td>Ewen, S. W. B. and A. Pusztai</td>
<td>1999</td>
<td>Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine</td>
<td>The Lancet</td>
<td>354(9187)</td>
<td>1353-1354.</td>
</tr>
<tr>
<td>47</td>
<td>Torbjm Fagersstrom, C. Dexcelius, Ulf Magnusson</td>
<td>2012</td>
<td>Stop worrying; start growing</td>
<td>EMBO reports</td>
<td>13(6)</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Falck-Zepeda, J., J. Yokobe</td>
<td>2012</td>
<td>Estimates and implications of the costs of compliance with biosafety regulations in developing countries</td>
<td>Biotechnology in Agriculture and the Food Chain</td>
<td>3(1)</td>
<td>52-59.</td>
</tr>
<tr>
<td>49</td>
<td>Falck-Zepeda, J. B.</td>
<td>2009</td>
<td>Socio-economic considerations</td>
<td>Cartagena Protocolo on Biosafety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Ferrer-Miralles, N., J. Domingo-Espain</td>
<td>2009</td>
<td>Microbial factories for recombinant pharmaceuticals</td>
<td>Microbial Cell Factories</td>
<td>8(1)</td>
<td>17</td>
</tr>
<tr>
<td>51</td>
<td>Ferry, N. and A. M. R. Gatehouse</td>
<td>2009</td>
<td>Environmental impact of genetically modified crops</td>
<td>Nature</td>
<td>478(7369)</td>
<td>337-342</td>
</tr>
<tr>
<td>53</td>
<td>Garfinkel, M. S., D. Endy</td>
<td>2007</td>
<td>Synthetic genomics: options for governance</td>
<td>Industrial Biotechnology</td>
<td>3(4)</td>
<td>333-365</td>
</tr>
<tr>
<td>54</td>
<td>Gatehouse, A. M. R., N. Ferry</td>
<td>2007</td>
<td>Insect-resistant biotech crops and their impacts on beneficial arthropods</td>
<td>Philosophical Transactions of the Royal Society B: Biological Sciences</td>
<td>366(1569)</td>
<td>1438-1452</td>
</tr>
<tr>
<td>55</td>
<td>Gilbert, J.</td>
<td>1999</td>
<td>Sampling of raw materials and processed foods for the presence of GMOs</td>
<td>Food control</td>
<td>10(6)</td>
<td>363-365</td>
</tr>
<tr>
<td>56</td>
<td>Gilbert, N</td>
<td>2010</td>
<td>Food: Inside the hothouses of industry</td>
<td>Nature</td>
<td>466 (7306)</td>
<td>548</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>91</td>
<td>Horton, R.</td>
<td>1999</td>
<td>Genetically modified foods: “absurd” concern or welcome dialogue?</td>
<td>Lancet</td>
<td>354(9187)</td>
<td>1314</td>
</tr>
<tr>
<td>92</td>
<td>Hsuyaung, L., C. Liuhing</td>
<td>2000</td>
<td>Detection of genetically modified soybeans and maize by the polymerase chain reaction method</td>
<td>Journal of Food and Drug Analysis</td>
<td>8(3)</td>
<td>200-207</td>
</tr>
<tr>
<td>93</td>
<td>Hübner, P., E. Studer</td>
<td>1999</td>
<td>Quantitation of genetically modified organisms in food</td>
<td>Nature Biotechnology</td>
<td>17(11)</td>
<td>1137-1138</td>
</tr>
<tr>
<td>94</td>
<td>Hyde, J., M. A. Martin</td>
<td>2001</td>
<td>An economic analysis of non-Bt corn refuges</td>
<td>Crop Protection</td>
<td>20(2)</td>
<td>167-171</td>
</tr>
<tr>
<td>97</td>
<td>Jia, H.</td>
<td>2007</td>
<td>Newsmaker: Biocentury Transgene</td>
<td>Nature Biotechnology</td>
<td>29(1)</td>
<td>42350</td>
</tr>
<tr>
<td>100</td>
<td>Klotz-Ingram, C., S. Jans</td>
<td>1999</td>
<td>Farm-level production effects related to the adoption of genetically modified cotton for pest management</td>
<td>The plant journal</td>
<td>7(1)</td>
<td>161-177</td>
</tr>
<tr>
<td>101</td>
<td>Kuiper, H. A.</td>
<td>1999</td>
<td>Summary report of the ILSI Europe workshop on detection methods for novel foods derived from genetically modified organisms</td>
<td>Food control</td>
<td>10(6)</td>
<td>339-350</td>
</tr>
<tr>
<td>102</td>
<td>Kuiper, H. A., G. A. Kleter</td>
<td>2001</td>
<td>Assessment of the food safety issues related to genetically modified foods</td>
<td>Food control</td>
<td>27(6)</td>
<td>503-528</td>
</tr>
<tr>
<td>103</td>
<td>Kupferschmidt, K.</td>
<td>2011</td>
<td>Amid Europe’s Food Fights, EFSA Keeps Its Eyes on the Evidence</td>
<td>Science</td>
<td>338(6111)</td>
<td>1146-1147</td>
</tr>
<tr>
<td>104</td>
<td>Kuzma, J. and A. Kokotovich</td>
<td>2011</td>
<td>Renegotiating GM crop regulation</td>
<td>EMBO reports</td>
<td>12(9)</td>
<td>883-888</td>
</tr>
<tr>
<td>105</td>
<td>Kuzma, J., A. Kuzhabekova</td>
<td>2009</td>
<td>Improving oversight of genetically engineered organisms</td>
<td>Policy and Society</td>
<td>28(4)</td>
<td>279-299</td>
</tr>
<tr>
<td>106</td>
<td>Kwieci and J. nacute</td>
<td>2009</td>
<td>Genetically modified abominations?</td>
<td>EMBO reports</td>
<td>10(11)</td>
<td>1187-1190</td>
</tr>
<tr>
<td>107</td>
<td>Lüthy</td>
<td>1999</td>
<td>Detection strategies for food authenticity and genetically modified foods</td>
<td>Food control</td>
<td>10(6)</td>
<td>359-361</td>
</tr>
<tr>
<td>108</td>
<td>Laffont, J.-L., K. M. Remund</td>
<td>2005</td>
<td>Testing for adventitious presence of transgenic material in conventional seed or grain lots using quantitative laboratory methods: statistical procedures and their implementation</td>
<td>Seed Science Research</td>
<td>15(3)</td>
<td>197-204</td>
</tr>
<tr>
<td>112</td>
<td>Ma, Q., C. Gao</td>
<td>2013</td>
<td>Detection of Transgenic and Endogenous Plant DNA Fragments and Proteins in the Digesta, Blood, Tissues, and Eggs of Laying Hens Fed with Phytase Transgenic Corn</td>
<td>PloS one</td>
<td>8(4)</td>
<td>e61138</td>
</tr>
<tr>
<td>113</td>
<td>Mannion, A. M. and S. Morse</td>
<td>2009</td>
<td>Biotechnology in agriculture Agronomic and environmental considerations and reflections based on 15 years of GM crops</td>
<td>Progress in Physical Geography</td>
<td>36(6)</td>
<td>747-763</td>
</tr>
<tr>
<td>114</td>
<td>Lüscher, P., A. Martin</td>
<td>2001</td>
<td>An economic analysis of non-Bt corn refuges</td>
<td>Crop Protection</td>
<td>20(2)</td>
<td>167-171</td>
</tr>
<tr>
<td>115</td>
<td>Lüscher, J. r.</td>
<td>1999</td>
<td>Detection strategies for food authenticity and genetically modified foods</td>
<td>Food control</td>
<td>10(6)</td>
<td>359-361</td>
</tr>
<tr>
<td>ID</td>
<td>Author(s)</td>
<td>Title</td>
<td>Journal/Book</td>
<td>Volume/Issue</td>
<td>Page Numbers</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Martinelli, L., M. G. Karbarz</td>
<td>Science, safety, and trust: the case of transgenic food</td>
<td>Croatian Medical Journal</td>
<td>54(1)</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Matten, S. R., G. P. Head</td>
<td>How governmental regulation can help or hinder the integration of Bt crops within IPM programs</td>
<td>Integration of Insect-Resistant Genetically Modified Crops within IPM Programs</td>
<td>2008</td>
<td>27-39</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>McCluskey, J. and J. Swinnen</td>
<td>The media and food-risk perceptions</td>
<td>EMBO reports</td>
<td>12(7)</td>
<td>624-629</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>McMullen, M. D., S. Kresovich</td>
<td>Genetic properties of the maize nested association mapping population</td>
<td>Science</td>
<td>325(5941)</td>
<td>737-740</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Mendonca-Hagler, L., L. Souza</td>
<td>Trends in biotechnology and biosafety in Brazil</td>
<td>Environmental Biosafety Research</td>
<td>7(3)</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Messegueur, J.</td>
<td>Gene flow assessment in transgenic plants</td>
<td>Plant Cell, Tissue and Organ Culture</td>
<td>73(3)</td>
<td>201-212</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Mewett, O., K. R. Emslie</td>
<td>Maintaining Product Integrity in the Australian Seed and Grain Supply Chain: The Role of Sampling and Testing for GM Events, Bureau of Rural Sciences</td>
<td>Food control</td>
<td>10(6)</td>
<td>391-399</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Meyer, R.</td>
<td>Development and application of DNA analytical methods for the detection of GMOs in food</td>
<td>Agriculture and Human</td>
<td>1-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>H. Mielby, P. Saandoe, J. Lassen</td>
<td>Multiple aspects of unnaturalness: are cisgenic crops perceived as being more natural and more acceptable than transgenic crops?</td>
<td>Policy and Society</td>
<td>28(4)</td>
<td>267-278</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Migone, A. and M. Hewlett</td>
<td>Classifying biotechnology-related policy, regulatory and innovation regimes: A framework for the comparative analysis of genomics policy-making</td>
<td>Lecciones desde las Américas</td>
<td>49-92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Nadal, A. and T. A. Wise</td>
<td>Los costos ambientales de la liberalización agrícola: El comercio de maíz entre México y EE. UU. en el marco del NAFTA</td>
<td>FocusEnvironmental monitoring of genetically modified crops</td>
<td>1(6)</td>
<td>101N-105N</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Napier, J. A.</td>
<td>The production of unusual fatty acids in transgenic plants</td>
<td>Plant Biol.</td>
<td>58</td>
<td>295-319</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Nickson, T. E. and G. P. Head</td>
<td>FocusEnvironmental monitoring of genetically modified crops</td>
<td>Journal Of Environmental Monitoring</td>
<td>11(3)</td>
<td>e1001499</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Nielsen, K. M.</td>
<td>Biosafety data as confidential business information</td>
<td>Plant biotechnology</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Pacheco Mendivil, F.</td>
<td>Plagas de los cultivos agrícolas en Sonora y Baja California</td>
<td>Libro Técnico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Parrott, W.</td>
<td>Genetically modified myths and realities</td>
<td>New biotechnology</td>
<td>27(5)</td>
<td>545-551</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Pascher, K., D. Moser</td>
<td>Setup, efforts and practical experiences of a monitoring program for genetically modified plants-An Austrian case study for oilseed rape and maize</td>
<td>Environmental Sciences Europe</td>
<td>23(1)</td>
<td>42339</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Pellegrini, P. A.</td>
<td>What risks and for whom? Argentina's regulatory policies and global commercial interests in GMOs</td>
<td>Technology in Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Pla, M., A. Nadal</td>
<td>New Multiplexing Tools for Reliable GMO Detection</td>
<td>EMBO reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Podevin, N., Y. Devos</td>
<td>Transgenic or not? No simple answer!</td>
<td>EMBO reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Pohl Nielsen, C., S. Robinson</td>
<td>Genetic engineering and trade: Paracaea or dilemma for developing countries</td>
<td>World Development</td>
<td>29(8)</td>
<td>1307-1324</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Popkin, B. M.</td>
<td>Agricultural policies, food and public health</td>
<td>EMBO reports</td>
<td>12(1)</td>
<td>43405</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Porteus, M. H. and D. Carroll</td>
<td>Gene targeting using zinc finger nucleases</td>
<td>Nature biotechnology</td>
<td>23(8)</td>
<td>967-973</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Qaim, M.</td>
<td>Bt cotton in India: Field trial results and economic projections</td>
<td>World Development</td>
<td>31(12)</td>
<td>2115-2127</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Qaim, M. and A. De Janvry</td>
<td>Bt cotton and pesticide use in Argentina: Economic and environmental effects</td>
<td>Environment and Development Economics</td>
<td>10(2)</td>
<td>179-200</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Qaim, M., C. E. Pray</td>
<td>Economic and social considerations in the adoption of Bt crops. Integration of insect-resistant genetically modified crops within IPM programs</td>
<td>Food and Chemical Toxicology</td>
<td>329-356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Qi, X., He.</td>
<td>Subchronic feeding study of stacked trait genetically-modified soya bean (3DS5423 + 40-3-2) in Sprague-Dawley rats</td>
<td>Food and Chemical Toxicology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Raney, T.</td>
<td>Economic impact of transgenic crops in developing countries</td>
<td>Current Opinion in biotechnology</td>
<td>17(2)</td>
<td>174-178</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Rappaport, D.B.</td>
<td>La soberanía alimentarizel quehacer del campesino mexicano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Rogers, M.</td>
<td>1975</td>
<td>The Pandora’s box congress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Rommens, C. M., M. A. Haring,</td>
<td>2007</td>
<td>The intrageneric approach as a new extension to traditional plant breeding</td>
<td>Trends in Plant Science</td>
<td>12(9)</td>
<td>397-403</td>
</tr>
<tr>
<td>158</td>
<td>Rowe, G.</td>
<td>2004</td>
<td>How can genetically modified foods be made publicly acceptable?</td>
<td>Trends in Biotechnology</td>
<td>22(3)</td>
<td>107-109</td>
</tr>
<tr>
<td>159</td>
<td>Ryffel, G. U.</td>
<td>2011</td>
<td>Dismay with GM maize</td>
<td>EMBO Reports</td>
<td>12(10)</td>
<td>996-999</td>
</tr>
<tr>
<td>160</td>
<td>Sakamoto, Y., Y. Tada</td>
<td>2007</td>
<td>A 52-week feeding study of genetically modified soybeans in F344 rats</td>
<td>Journal of the Food Hygienic Society of Japan</td>
<td>48(3)</td>
<td>41</td>
</tr>
<tr>
<td>161</td>
<td>Sanvido, O., F. Widmer</td>
<td>2005</td>
<td>A conceptual framework for the design of environmental post-market monitoring of genetically modified plants</td>
<td>Environmental Biosafety Research</td>
<td>4(1)</td>
<td>13-27</td>
</tr>
<tr>
<td>163</td>
<td>Scandizzo, P.</td>
<td>2009</td>
<td>Science and technology in world agriculture: Narratives and discourses</td>
<td>AgBioForum</td>
<td>12(1)</td>
<td>23-33</td>
</tr>
<tr>
<td>164</td>
<td>Schmeller, D. S. and K. Henle</td>
<td>2008</td>
<td>Cultivation of genetically modified organisms: resource needs for monitoring adverse effects on biodiversity</td>
<td>Biodiversity and Conservation</td>
<td>17(14)</td>
<td>3551-3558</td>
</tr>
<tr>
<td>165</td>
<td>G.Schmidt, W. Schröder</td>
<td>2011</td>
<td>Implications of GMO cultivation and monitoring-series</td>
<td>Open Access</td>
<td>23(2)</td>
<td>2</td>
</tr>
<tr>
<td>166</td>
<td>K. Schmidt, J. Schiemann, R. Wilhelm</td>
<td>2007</td>
<td>European-wide GMO-monitoring data management and analysis</td>
<td>Verbraucherschutz und Lebensmitteleinheit</td>
<td>(2)</td>
<td>42309</td>
</tr>
<tr>
<td>168</td>
<td>Sexton, S., D. Ziberman</td>
<td>2009</td>
<td>The role of biotechnology in a sustainable biofuel future</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Shi, G., J.-P. Chavas</td>
<td>2013</td>
<td>Commercialized transgenic traits, maize productivity and yield risk</td>
<td>Nature biotechnology</td>
<td>31(2)</td>
<td>111-114</td>
</tr>
<tr>
<td>170</td>
<td>Showalter, A. M., S. Heuberger</td>
<td>2009</td>
<td>A primer for using transgenic insecticidal cotton in developing countries</td>
<td>Journal of Insect Science</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>171</td>
<td>Smith, L. M.</td>
<td>2005</td>
<td>Divided We Fail: The Shortcomings of the European Union’s Proposal for Independent Member States to Regulate the Cultivation of Genetically Modified Organisms</td>
<td>U. Pa. J. Int'l L.</td>
<td>33</td>
<td>841</td>
</tr>
<tr>
<td>172</td>
<td>M. Soberón, A. Bravo</td>
<td>2008</td>
<td>Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación</td>
<td>Una ventanilla al quehacer científico Instituto de Biotecnología de la UNAM</td>
<td>25</td>
<td>303-314</td>
</tr>
<tr>
<td>173</td>
<td>Tait, J. and G. Barker</td>
<td>2011</td>
<td>Global food security and the governance of modern biotechnologies</td>
<td>EMBO Reports</td>
<td>12(8)</td>
<td>763-768</td>
</tr>
<tr>
<td>174</td>
<td>Soleri, D., D. A. Cleveland</td>
<td>2006</td>
<td>Transgenic crops and crop varietal diversity: the case of maize in Mexico</td>
<td>BioScience</td>
<td>56(6)</td>
<td>503-513</td>
</tr>
<tr>
<td>175</td>
<td>Stave, J. W.</td>
<td>1999</td>
<td>Detection of new or modified proteins in novel foods derived from GMOs "future needs."</td>
<td>Food Control 10(6): 367-374</td>
<td>10(6)</td>
<td>367-374</td>
</tr>
<tr>
<td>178</td>
<td>Subramanian, A. and M. Qaim</td>
<td>2009</td>
<td>Village-wide effects of agricultural biotechnology: The case of Bt cotton in India</td>
<td>World Development</td>
<td>37(1)</td>
<td>256-267</td>
</tr>
<tr>
<td>180</td>
<td>Talebria, F., D. Karakashiev</td>
<td>2010</td>
<td>Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation</td>
<td>Bioresource Technology</td>
<td>101(13)</td>
<td>4744-4753</td>
</tr>
<tr>
<td>181</td>
<td>Tang, X., F. Han,</td>
<td>2013</td>
<td>A 90-Day Dietary Toxicity Study of Genetically Modified Rice T1C-1 Expressing Cry1C Protein in Sprague Dawley Rats</td>
<td>PloS one</td>
<td>7(12)</td>
<td>e52507</td>
</tr>
<tr>
<td>182</td>
<td>Tepfer, M., M. Racovita</td>
<td>2013</td>
<td>Putting problem formulation at the forefront of GMO risk analysis</td>
<td>GM Crops and Food: Biotechnology in Agriculture and the Food Chain</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Tian, J.-C., X.-P. Wang</td>
<td>Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, chrysoperla rufilabris</td>
<td>PloS one</td>
<td>8(3)</td>
<td>e60125</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Tironi, M., M. Salazar</td>
<td>Resisting and accepting: Farmers' hybrid epistemologies in the GMO controversy in Chile.</td>
<td>Technology in Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Toenniessen, G. H., J. Toole</td>
<td>Advances in plant biotechnology and its adoption in developing countries</td>
<td>Current Opinion in Plant Biology</td>
<td>6(2)</td>
<td>191-198</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Touyz, L. Z. G.</td>
<td>Genetically modified foods, cancer, and diet: myths and reality</td>
<td>Current Oncology</td>
<td>20(2)</td>
<td>e59</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Trapman, S., M. Burns</td>
<td>Guidance document on measurement uncertainty for GMO testing laboratories.</td>
<td>Joint Research Institute for Reference Materials and Measurements</td>
<td></td>
<td>14977</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Traxler, G. and S. Godoy-Avila</td>
<td>Transgenic cotton in Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Tuohy, K., M. Davies,</td>
<td>Monitoring transfer of recombinant and nonrecombinant plasmids between Lactococcus lactis strains and members of the human gastrointestinal microbiota in vivo impact of donor</td>
<td>Journal of applied microbiology</td>
<td>93(6)</td>
<td>954-964</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Vacher, C., D. Bourguet</td>
<td>Fees or refuges: which is better for the sustainable management of insect resistance to transgenic Bt corn?</td>
<td>Biology letters</td>
<td>2(2)</td>
<td>198-202</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Vaitilingom, M., H. Pijnenburg</td>
<td>Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods</td>
<td>Journal of Agricultural and Food Chemistry</td>
<td>47(12)</td>
<td>5261-5266</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Valdivia, V., D. Dixia</td>
<td>Situación y perspectivas del maíz en México</td>
<td>UACH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>van der Merwe, F., C. Bezuidenhout</td>
<td>Effects of Cry1Ab Transgenic Maize on Lifecycle and Biomarker Responses of the Earthworm, Eisenia Andrei</td>
<td>Sensors</td>
<td>12(12)</td>
<td>17155-17167</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Vanderschuren, H., D. Heinzmann</td>
<td>A cross-sectional study of biotechnology awareness and teaching in European high schools</td>
<td>New biotechnology</td>
<td>27(6)</td>
<td>822-828</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Vegan, J. C., E. Ibarra-Laslette</td>
<td>Deep sampling of the Palermo maize transcriptome by a high throughput strategy of pyrosequencing</td>
<td>BMC genomics</td>
<td>10(1)</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Waiblinger, H.-U., M.</td>
<td>In-house and interlaboratory validation of a method for the extraction of DNA from pollen in honey</td>
<td>Journal f. Verbraucherschutz und Lebensmittelsicherheit</td>
<td>7(3)</td>
<td>243-254</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Wan, P., Y. Huang</td>
<td>The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China</td>
<td>PLoS One</td>
<td>7(7)</td>
<td>e42004</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Wegier, A., A. Piñeyro-Nelson</td>
<td>Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin</td>
<td>Molecular ecology</td>
<td>20(19)</td>
<td>4182-4194.</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Wickson, F. and B. Wynne</td>
<td>The anglerfish deception</td>
<td>EMBO reports</td>
<td>13(2)</td>
<td>100-105.</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Wilhelm, R., L. Beissner</td>
<td>Concept for the realisation of a GMO monitoring in Germany</td>
<td>Federal Biological Research Centre for Agriculture and Forestry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Wilhelm, R., O. Sanvido</td>
<td>Monitoring the commercial cultivation of Bt maize in Europe conclusions and recommendations for future monitoring practice</td>
<td>Environmental biosafety research</td>
<td>8(4)</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Williams, A. L., R. E. Watson</td>
<td>Developmental and reproductive outcomes in humans and animals after glyphosate exposure: a critical analysis</td>
<td>Journal of Toxicology and Environmental Health</td>
<td>Part B 15(1)</td>
<td>39-96</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Wolt, J. D., P. Keese</td>
<td>Problem formulation in the environmental risk assessment for genetically modified plants</td>
<td>Transgenic research</td>
<td>19(3)</td>
<td>425-436</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Wu, F.</td>
<td>Mycotoxin reduction in Bt corn: potential economic, health, and regulatory impacts</td>
<td>Transgenic research</td>
<td>15(3)</td>
<td>277-289</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Yamanouchi, K.</td>
<td>Regulatory considerations in the development and application of biotechnology in Japan. Revue scientifique et technique-Office international des plantes</td>
<td>24(1)</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Yamasaki, M., M. I. Tenaille</td>
<td>A large-scale screen for artificial selection in maize identifies candidate agronomic tool for domestication and crop improvement</td>
<td>The Plant Cell Online</td>
<td>17(11)</td>
<td>2859-2872</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Lastname, Firstname, Coauthors</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Volume/Issue</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>215</td>
<td>Zährhart, W., A. Bentzer</td>
<td>2008</td>
<td>Determining indicators, methods and sites for monitoring potential adverse effects of genetically modified plants to the environment: the legal and conceptual framework</td>
<td>Euphytica</td>
<td>164(3)</td>
<td>845-852.</td>
</tr>
<tr>
<td>217</td>
<td>Zel, J., M. Milevec</td>
<td>2012</td>
<td>How to reliably test for GMOs</td>
<td>Springer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>Zhang, J., L. Cai</td>
<td>2008</td>
<td>Transgene integration and organization in cotton (Gossypium hirsutum L.) genome</td>
<td>Transgenic research</td>
<td>17(2)</td>
<td>293-306</td>
</tr>
<tr>
<td>219</td>
<td>Arkham, E., Heinze P., Kay S., Van den Eede G., Popping B</td>
<td>2002</td>
<td>Validation studies and proficiency testing</td>
<td>Journal of AOAC International</td>
<td>85</td>
<td>809-815</td>
</tr>
<tr>
<td>220</td>
<td>Dale P.J., Clarke B., Fontes EMG</td>
<td>2002</td>
<td>Potential for the environmental impact of transgenic crops</td>
<td>Nature Biotechnology</td>
<td>20</td>
<td>567-574</td>
</tr>
<tr>
<td>221</td>
<td>Gaugitsch H</td>
<td>2002</td>
<td>Experience with environmental issues in GM crop production and the likely future scenarios</td>
<td>Toxicology Letters</td>
<td>127</td>
<td>351-357</td>
</tr>
<tr>
<td>222</td>
<td>Helmut G</td>
<td>2002</td>
<td>Experience with environmental issues in GM crop production and the likely future scenarios</td>
<td>Toxicology Letters</td>
<td>127</td>
<td>351-357</td>
</tr>
<tr>
<td>223</td>
<td>Hötzl MJ</td>
<td>2002</td>
<td>Industry scientists look for benefits, not risks</td>
<td>Nature</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Huang, J., Rozelle S., Pray C., Wang Q</td>
<td>2002</td>
<td>Plant biotechnology in China</td>
<td>Science</td>
<td>295</td>
<td>674-676</td>
</tr>
<tr>
<td>225</td>
<td>Keith T.A.</td>
<td>2002</td>
<td>Safety assessment of genetically modified crops</td>
<td>Toxicology</td>
<td>181-182</td>
<td>421-426</td>
</tr>
<tr>
<td>229</td>
<td>Magnusson, M.K., Koivisto, Hursti U-K</td>
<td>2002</td>
<td>Consumer attitudes towards genetically modified foods</td>
<td>Appetite</td>
<td>39</td>
<td>45536</td>
</tr>
<tr>
<td>230</td>
<td>Marvier M</td>
<td>2002</td>
<td>IMPROVING RISK ASSESSMENT FOR NONTARGET SAFETY OF TRANSGENIC CROPS</td>
<td>Ecological Applications</td>
<td>12</td>
<td>1119-1124</td>
</tr>
<tr>
<td>231</td>
<td>Pray, C.E., Huang J., Hu R., Rozelle S</td>
<td>2002</td>
<td>Five years of Bt cotton in China - the benefits continue</td>
<td>Plant J</td>
<td>31</td>
<td>423-430</td>
</tr>
<tr>
<td>233</td>
<td>Schilter B., Constable A</td>
<td>2002</td>
<td>Regulatory control of genetically modified (GM) foods: likely developments</td>
<td>Toxicology Letters</td>
<td>127</td>
<td>341-349</td>
</tr>
<tr>
<td>235</td>
<td>Brown J.L., Ping Y.</td>
<td>2003</td>
<td>Consumer perception of risk associated with eating genetically engineered soybeans is less in the presence of a perceived consumer benefit</td>
<td>Journal of the American Dietetic Association</td>
<td>103</td>
<td>208-214</td>
</tr>
<tr>
<td>238</td>
<td>Gewin V</td>
<td>2003</td>
<td>Genetically Modified Corn— Environmental Benefits and Risks</td>
<td>PLoS Biology</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Qaim M., Zilberman D</td>
<td>2003</td>
<td>Yield effects of genetically modified crops in developing countries</td>
<td>Science</td>
<td>299</td>
<td>900-902</td>
</tr>
<tr>
<td>244</td>
<td>Frewer L., Lassen J., Kettitlz B, Scholderer J., Beekman V., Berdal K.G</td>
<td>2004</td>
<td>Societal aspects of genetically modified foods</td>
<td>Food and Chemical Toxicology</td>
<td>42</td>
<td>1181-1193</td>
</tr>
<tr>
<td>No.</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Ilisi</td>
<td>2004</td>
<td>Nutritional and Safety Assessments of Foods and Feeds: Nutritionally Improved through Biotechnology</td>
<td>CRFSFS</td>
<td>3</td>
<td>36-104</td>
</tr>
<tr>
<td>249</td>
<td>Jaffe G</td>
<td>2004</td>
<td>Regulating Transgenic Crops: A Comparative Analysis of Different Regulatory Processes</td>
<td>Transgenic Research</td>
<td>13</td>
<td>43586</td>
</tr>
<tr>
<td>250</td>
<td>König A, Cockburn A, Grevel RWR, Debruyne E, Gratstrom P, Hammerling U, Kimbas I</td>
<td>2004</td>
<td>Assessment of the safety of foods derived from genetically modified (GM) crops</td>
<td>Food and Chemical Toxicology</td>
<td>42</td>
<td>1047-1088</td>
</tr>
<tr>
<td>251</td>
<td>Kuper HA, König A, Kletter GA, Hammes WP, Knudsen I</td>
<td>2004</td>
<td>Concluding remarks</td>
<td>Food and Chemical Toxicology</td>
<td>42</td>
<td>1195-1202</td>
</tr>
<tr>
<td>254</td>
<td>Cleveland DA, Soleri D</td>
<td>2005</td>
<td>Rethinking the Risk Management Process for Genetically Engineered Crop Varieties in Small-scale, Traditionally Based Agriculture</td>
<td>Ecology and Society</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>Schmidt CW</td>
<td>2005</td>
<td>Genetically Modified Foods: Breeding Uncertainty</td>
<td>Environmental Health Perspectives</td>
<td>113</td>
<td>A526-A533</td>
</tr>
<tr>
<td>258</td>
<td>Velkov VV, Medvinsky AB, Sokolov MS, Marchenke Al</td>
<td>2005</td>
<td>Will transgenic plants adversely affect the environment?</td>
<td>Journal of Biosciences</td>
<td>30</td>
<td>515-548</td>
</tr>
<tr>
<td>259</td>
<td>Weil JH</td>
<td>2005</td>
<td>Are Genetically Modified Plants Useful and Safe?</td>
<td>IUBMB Life</td>
<td>57</td>
<td>311-314</td>
</tr>
<tr>
<td>263</td>
<td>Chapman MA, Burke JM</td>
<td>2006</td>
<td>Letting the gene out of the bottle: the population genetics of genetically modified crops</td>
<td>The New Phytologist</td>
<td>170</td>
<td>429-443</td>
</tr>
<tr>
<td>264</td>
<td>Efsa</td>
<td>2006</td>
<td>Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed</td>
<td>EFSA Journal</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Efsa</td>
<td>2011</td>
<td>Guidance on the environmental risk assessment for genetically modified products</td>
<td>EFSA Journal</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Frison EA, Smith IF, Johns T, Cherfas J, Eyzaguirre PB</td>
<td>2006</td>
<td>Agricultural biodiversity, nutrition, and health: making a difference to hunger and nutrition in the developing world</td>
<td>Food and Nutrition Bulletin</td>
<td>27</td>
<td>167-179</td>
</tr>
<tr>
<td>267</td>
<td>Haslberger AG</td>
<td>2006</td>
<td>Need for an “Integrated Safety Assessment” of GMOs, Linking Food Safety and Environmental Considerations</td>
<td>J. Agric. Food Chem.</td>
<td>54</td>
<td>3173-3180</td>
</tr>
<tr>
<td>269</td>
<td>Huang J, Gliu H, Bai J, Pray C</td>
<td>2006</td>
<td>Awareness, acceptance of and willingness to buy genetically modified foods in urban China</td>
<td>Appetite</td>
<td>46</td>
<td>144-151</td>
</tr>
<tr>
<td>271</td>
<td>Margulis C</td>
<td>2006</td>
<td>The Hazards of Genetically Engineered Foods</td>
<td>Environmental Health Perspectives</td>
<td>114</td>
<td>A146-A147</td>
</tr>
<tr>
<td>272</td>
<td>McCammon SL</td>
<td>2006</td>
<td>9th International Symposium on the Biosafety of Genetically Modified Organisms. Session II: Biosafety research and risk assessment</td>
<td>Environmental Biosafety Research</td>
<td>5</td>
<td>177-182</td>
</tr>
<tr>
<td>275</td>
<td>Schiemann J</td>
<td>2006</td>
<td>9th International Symposium on the Biosafety of Genetically Modified Organisms. Session VII: Risk management and monitoring</td>
<td>Environmental Biosafety Research</td>
<td>5</td>
<td>201-203</td>
</tr>
<tr>
<td>276</td>
<td>Schouten HJ, Jacobsen E</td>
<td>2006</td>
<td>Cisgenic plants are similar to traditionally bred plants</td>
<td>EMBO Reports</td>
<td>7</td>
<td>750-753</td>
</tr>
<tr>
<td>No.</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>277</td>
<td>Schouten HJ,Krens FA,Jacobsen E</td>
<td>2006</td>
<td>Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisisogenesis</td>
<td>EMBO Reports</td>
<td>7</td>
<td>750-753</td>
</tr>
<tr>
<td>278</td>
<td>Singh OV,Gha S,Paul D,Jain RK</td>
<td>2006</td>
<td>Genetically modified crops: success, safety assessment, and public concern</td>
<td>Applied Microbiology and Biotechnology</td>
<td>71</td>
<td>598-607</td>
</tr>
<tr>
<td>279</td>
<td>Barfoot GB,Peter</td>
<td>2007</td>
<td>Global Impact of Biotech Crops: Socio-Economic and Environmental Effects in the First Ten Years of Commercial Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>Kendra DF,Dyer RB</td>
<td>2007</td>
<td>Opportunities for biotechnology and policy regarding mycotoxin issues in international trade</td>
<td>International Journal of Food Microbiology</td>
<td>119</td>
<td>147-151</td>
</tr>
<tr>
<td>284</td>
<td>Nasiruddin KM,Nasim A</td>
<td>2007</td>
<td>Development of agribiotechnology and biosafety regulations used to assess safety of genetically modified crops in Bangladesh</td>
<td>Journal of AOAC International</td>
<td>90</td>
<td>1508-1512</td>
</tr>
<tr>
<td>286</td>
<td>Peterson M</td>
<td>2007</td>
<td>The precautionary principle should not be used as a basis for decision-making. Talking Point on the precautionary principle</td>
<td>EMBO Reports</td>
<td>8</td>
<td>305-308</td>
</tr>
<tr>
<td>289</td>
<td>Raybould A</td>
<td>2007</td>
<td>Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops</td>
<td>Environmental Biosafety Research</td>
<td>5</td>
<td>119-125</td>
</tr>
<tr>
<td>291</td>
<td>Varzakas TH,Chrysoschoids G,Argyropoulos D</td>
<td>2007</td>
<td>Approaches in the risk assessment of genetically modified foods by the Hellenic Food Safety Authority</td>
<td>Food and Chemical Toxicology</td>
<td>45</td>
<td>530-542</td>
</tr>
<tr>
<td>293</td>
<td>Cerf O</td>
<td>2008</td>
<td>Current Definitions of Risk for Food Safety and Animal Health: Allow Risk Assessments to Provide Substantially Different Outcomes</td>
<td>Risk Analysis</td>
<td>28</td>
<td>811-813</td>
</tr>
<tr>
<td>295</td>
<td>Chao E,Krewski D</td>
<td>2008</td>
<td>A risk-based classification scheme for genetically modified foods I: Conceptual development</td>
<td>Regulatory Toxicology and Pharmacology</td>
<td>52</td>
<td>208-222</td>
</tr>
<tr>
<td>296</td>
<td>Hug K</td>
<td>2008</td>
<td>Genetically modified organisms: do the benefits outweigh the risks?</td>
<td>Medicina (Kaunas)</td>
<td>44</td>
<td>87-99</td>
</tr>
<tr>
<td>297</td>
<td>Huggett B</td>
<td>2008</td>
<td>EU to monitor for Chinese GM rice</td>
<td>Nat Biotech</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>Key S,Ma J, KJC, Drake PMW</td>
<td>2008</td>
<td>Genetically modified plants and human health</td>
<td>Journal of the Royal Society of Medicine</td>
<td>101</td>
<td>290-298</td>
</tr>
<tr>
<td>299</td>
<td>Kok EJ,Kiejer J, Keiter GA, Kuiper HA</td>
<td>2008</td>
<td>Comparative safety assessment of plant-derived foods</td>
<td>Regulatory Toxicology and Pharmacology</td>
<td>50</td>
<td>98-113</td>
</tr>
<tr>
<td>300</td>
<td>Krueger R,Buanc B</td>
<td>2008</td>
<td>Action needed to harmonize regulation of low-level presence of biotech traits</td>
<td>Nat Biotech</td>
<td>26</td>
<td>161-162</td>
</tr>
<tr>
<td>302</td>
<td>Lehman A,Johnson K</td>
<td>2008</td>
<td>Swedish farmers attitudes, expectations and fears in relation to growing genetically modified crops</td>
<td>Environmental Biosafety Research</td>
<td>7</td>
<td>153-162</td>
</tr>
<tr>
<td>303</td>
<td>Liu Y</td>
<td>2008</td>
<td>Regulation of GMOS in China</td>
<td>International Journal of Bioethics</td>
<td>19</td>
<td>139-158, 167</td>
</tr>
<tr>
<td>304</td>
<td>McHughen A,Smyth S</td>
<td>2008</td>
<td>US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars</td>
<td>Plant Biotechnology Journal</td>
<td>6</td>
<td>02-Dec</td>
</tr>
<tr>
<td>305</td>
<td>Morin X</td>
<td>2008</td>
<td>Genetically modified food from crops: progress, pawns, and possibilities</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>392</td>
<td>333-340</td>
</tr>
<tr>
<td>306</td>
<td>Morris SH, Spillane C</td>
<td>2008</td>
<td>GM directive deficiencies in the European Union. The current framework for regulating GM crops in the EU weakens the precautionary principle as a policy tool</td>
<td>EMBO Reports</td>
<td>9</td>
<td>500-504</td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
<td>Page(s)</td>
<td>Journal/Discipline</td>
<td>Page(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--------------------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traceability—a call for regulatory harmony</td>
<td>2008</td>
<td>26 975-978</td>
<td>Nature Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm questionnaires for monitoring genetically modified crops: a case study using GM maize</td>
<td>2008</td>
<td>7 163-179</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constantly evolving safety assessment protocols for GM foods</td>
<td>2008</td>
<td>17 Suppl 1 241-244</td>
<td>Asia Pacific Journal of Clinical Nutrition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulating innovative crop technologies in Canada: the case of regulating genetically modified crops</td>
<td>2008</td>
<td>6 213-225</td>
<td>Plant Biotechnology Journal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop improvement using small RNAs: applications and predictive ecological risk assessments</td>
<td>2009</td>
<td>27 644-651</td>
<td>Trends in Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towards a smart biosafety regulation: The case of Kenya</td>
<td>2009</td>
<td>8 133-139</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceptions, knowledge and ethical concerns with GM foods and the GM process</td>
<td>2009</td>
<td>18 177-188</td>
<td>Public Understanding of Science (Bristol, England)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preface to the journal supplement dedicated to the early awareness of emerging risks to food and feed safety</td>
<td>2009</td>
<td>47 909-910</td>
<td>Food and Chemical Toxicology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety assessment of food products from r-DNA animals</td>
<td>2009</td>
<td>32 163-189</td>
<td>Comparative Immunology, Microbiology and Infectious Diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetically Engineered Plants and Foods: A Scientist's Analysis of the Issues (Part II)</td>
<td>2009</td>
<td>60 511-559</td>
<td>Annual Review of Plant Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer knowledge and a priori risk analysis: pre-release evaluation of genetically modified Roundup Ready wheat across the Canadian prairies</td>
<td>2009</td>
<td>16 689-701</td>
<td>Environmental Science and Pollution Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 21st century technique for food control: electronic noses</td>
<td>2009</td>
<td>638 Jan-15</td>
<td>Analytica Chimica Acta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commentary: Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms</td>
<td>2009</td>
<td>8 65-78</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMO assessment in Norway: societal utility and sustainable development</td>
<td>2009</td>
<td>10 939-940</td>
<td>EMBO Reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM Risk Assessment</td>
<td>2009</td>
<td>478 315-330</td>
<td>Transgenic Wheat, Barley and Oats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biosafety, Risk Assessment and Regulation of Plant-Made Pharmaceuticals</td>
<td>2009</td>
<td>483 341-353</td>
<td>Recombinant Proteins From Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strangled at birth? Forest biotech and the Convention on Biological Diversity</td>
<td>2009</td>
<td>27 519-527</td>
<td>Nat Biotech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters</td>
<td>2009</td>
<td>8 Jan-14</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advancing environmental risk assessment for transgenic biofeedstock crops</td>
<td>2009</td>
<td>2 27-27</td>
<td>Biotechnology for Biofuels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecological risk assessment of genetically modified crops based on cellular automata modeling</td>
<td>2009</td>
<td>27 1132-1136</td>
<td>Biotechnology Advances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key elements in a strategic approach to capacity building in the biosafety of genetically modified organisms</td>
<td>2010</td>
<td>9 59-65</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic engineering compared to natural genetic variations</td>
<td>2010</td>
<td>27 517-521</td>
<td>New Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Framework for Postrelease Environmental Monitoring of Second-generation Crops with Novel Traits</td>
<td>2010</td>
<td>50</td>
<td>Crop Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience from use of GMOs in Argentinian agriculture, economy and environment</td>
<td>2010</td>
<td>27 588-592</td>
<td>New Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food safety risks and consumer health</td>
<td>2010</td>
<td>27 534-544</td>
<td>New Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM plants: Science, politics and EC regulations</td>
<td>2010</td>
<td>178 94-98</td>
<td>Plant Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetically modified crops deserve greater ecotoxicological scrutiny</td>
<td>2010</td>
<td>19 1642-1644</td>
<td>Ecotoxicology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade and commerce in improved crops and food: an essay on food security</td>
<td>2010</td>
<td>27 623-627</td>
<td>New Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>Emmons H</td>
<td>2010</td>
<td>GMO analysis – a complex and challenging undertaking</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>396</td>
<td>1949-1950</td>
</tr>
<tr>
<td>340</td>
<td>EU</td>
<td>2010</td>
<td>A decade of EU-funded GMO research (2001-2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>341</td>
<td>European c</td>
<td>2010</td>
<td>A decade of EU-funded GMO research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>Gressel J</td>
<td>2010</td>
<td>Needs for and environmental risks from transgenic crops in the developing world</td>
<td>New Biotechnology</td>
<td>27</td>
<td>522-527</td>
</tr>
<tr>
<td>343</td>
<td>Herman RA, Scherer PN, Phillips AM, Storer NP, Krieger M</td>
<td>2010</td>
<td>Safe composition levels of transgenic crops assessed via a clinical medicine model</td>
<td>Biotechnology Journal</td>
<td>5</td>
<td>172-182</td>
</tr>
<tr>
<td>346</td>
<td>Miller HI</td>
<td>2010</td>
<td>The regulation of agricultural biotechnology: science shows a better way</td>
<td>New Biotechnology</td>
<td>27</td>
<td>628-634</td>
</tr>
<tr>
<td>348</td>
<td>O’Callaghan M, Soboleva T, K, Barrett BIP</td>
<td>2010</td>
<td>Using existing data to predict and quantify the risks of GM forage to a population of a non-target invertebrate species: a New Zealand case study</td>
<td>Environmental Biosafety Research</td>
<td>9</td>
<td>155-161</td>
</tr>
<tr>
<td>350</td>
<td>Potrykus I.</td>
<td>2010</td>
<td>Regulation must be revolutionized</td>
<td>Nature</td>
<td>466</td>
<td>561-561</td>
</tr>
<tr>
<td>351</td>
<td>Raybould A, Tuttle A, Shore S, Stone T</td>
<td>2010</td>
<td>Environmental risk assessments for transgenic crops producing output trait enzymes</td>
<td>Transgenic Research</td>
<td>19</td>
<td>595-609</td>
</tr>
<tr>
<td>353</td>
<td>Rod A H</td>
<td>2010</td>
<td>Ecological risk assessment for transgenic crops: separating the seed from the chaff</td>
<td>Trends in Biotechnology</td>
<td>28</td>
<td>159-160</td>
</tr>
<tr>
<td>357</td>
<td>Collier MJ, Mullins E</td>
<td>2011</td>
<td>The CINMa Index: Assessing the potential impact of GM crop management across a heterogeneous landscape</td>
<td>Environmental Biosafety Research</td>
<td>9</td>
<td>135-145</td>
</tr>
<tr>
<td>358</td>
<td>Farre G, Tymian RM, Zhu C, Capelli T, Christou P</td>
<td>2011</td>
<td>Nutritionally enhanced crops and food security: scientific achievements versus political expediency</td>
<td>Current Opinion in Biotechnology</td>
<td>22</td>
<td>245-251</td>
</tr>
<tr>
<td>360</td>
<td>James C</td>
<td>2011</td>
<td>Global Status of Commercialized Biotech/GM Crops</td>
<td>ISAAA Brief</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>362</td>
<td>Morris EJ</td>
<td>2011</td>
<td>A semi-quantitative approach to GMO risk-benefit analysis</td>
<td>Transgenic Research</td>
<td>20</td>
<td>1055-1071</td>
</tr>
<tr>
<td>363</td>
<td>Placzinski W, Crawford A, Downey R, Harvey B, Huber S, Hurst P, Lehman LK, Macintosh S, Pohl</td>
<td>2011</td>
<td>Plants with genetically modified events combined by conventional breeding: An assessment of the need for additional regulatory data</td>
<td>Food and Chemical Toxicology</td>
<td>49</td>
<td>42186</td>
</tr>
<tr>
<td>365</td>
<td>Romeis J, Helinrich R, Candelotti MP, Carstens K, De Schrijver A, Gatehouse AMR, Herman</td>
<td>2011</td>
<td>Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants</td>
<td>Transgenic Research</td>
<td>20</td>
<td>Jan-22</td>
</tr>
<tr>
<td>366</td>
<td>Sanvito O, Romeis J, Bigler F</td>
<td>2011</td>
<td>Environmental change challenges decision-making during post-market environmental monitoring of transgenic crops</td>
<td>Transgenic Research</td>
<td>1191-1201</td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>Waltz E</td>
<td>2011</td>
<td>GM grass eludes outdated USDA oversight</td>
<td>Nature Biotechnology</td>
<td>29</td>
<td>772-773</td>
</tr>
<tr>
<td>369</td>
<td>Houllier F</td>
<td>2012</td>
<td>Biotechnology: Bring more rigour to GM research</td>
<td>Nature</td>
<td>491</td>
<td>327-327</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title</td>
<td>Journal/Book</td>
<td>Volume/Issue</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Gómez-Galera S, Twyman RM, Sparrow PAC, Van Droogenbroeck B, Gusters K</td>
<td>Field trials and tribulations—making sense of the regulations for experimental field trials of transgenic crops in Europe</td>
<td>Plant Biotechnology Journal</td>
<td>10</td>
<td>511-523</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Keogh B</td>
<td>Biotech crops’ seal of safety does not convince skeptics</td>
<td>Journal of the National Cancer Institute</td>
<td>104</td>
<td>498-501</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Komen J</td>
<td>The emerging international regulatory framework for biotechnology</td>
<td>GM crops & food</td>
<td>3</td>
<td>78-84</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>McHughen A</td>
<td>Introduction to the GM crops special issue on biosafety, food and GM regulation</td>
<td>GM crops & food</td>
<td>3</td>
<td>06-Aug</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Moses V</td>
<td>GM in the media</td>
<td>GM crops & food</td>
<td>3</td>
<td>42127</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Okera JK, Wolte JD, Misra MK, Rodríguez L</td>
<td>Africa’s inevitable walk to genetically modified (GM) crops: opportunities and challenges for commercialization</td>
<td>New Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Parrott WA, Jez JM, Hannah LC</td>
<td>To be or not to be transgenic</td>
<td>Nature Biotechnology</td>
<td>30</td>
<td>825-826</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Raybould A, Poppy GM</td>
<td>Commercializing genetically modified crops under EU regulations: Objectives and barriers</td>
<td>GM crops & food</td>
<td>3</td>
<td>44075</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Rodríguez-Entrena M, Salazar-Ordóñez M</td>
<td>Influence of scientific-technical literacy on consumers’ behavioural intentions regarding new food</td>
<td>Appetite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Ryffel GU</td>
<td>Organic plants: Gene-manipulated plants compatible with organic farming</td>
<td>Biotechnology Journal</td>
<td>7</td>
<td>1328-1331</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>von Kries C, Winter G</td>
<td>The structuring of GMO release and evaluation in EU law</td>
<td>Biotechnology Journal</td>
<td>7</td>
<td>569-581</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Anderson MA, Lay FT, Heath RL</td>
<td>Plant-derived molecules and genetic sequences encoding same and uses therefor</td>
<td>WO Pat. No. 02063011A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Baersén SR, Rodríguez-DJ, Tran M, Feng Y, Biest NA, Dil GM</td>
<td>Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5 Enolpyruvylshikimate-3 Phosphate Synthase</td>
<td>Plant Physiology</td>
<td>129</td>
<td>1265-1275</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Bernal CC, Aguda RM, Cohen MB</td>
<td>Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cytorhinus lividipennis</td>
<td>Entomologia Experimentalis et Applicata</td>
<td>102</td>
<td>21-28</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Bernal JS, Gresit JG, Gillogly PO</td>
<td>Impacts of developing on maize-intoxicated hosts on fitness parameters of a stem borers parasitoid</td>
<td>Journal of Entomological Science</td>
<td>37</td>
<td>27-40</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Bernal JS, Gresit JG, Gillogly PO</td>
<td>Impacts of developing on maize-intoxicated hosts on fitness parameters of a stem borers parasitoid</td>
<td>J. Entomol. Sci.</td>
<td>37</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Bilzer RJ, Buckelew LD, Pedigo LP</td>
<td>Effects of Transgenic Herbicide-Resistant Soybean Varieties and Systems on Surface-Active Springtails (Entognatha: Colembola)</td>
<td>Environmental Entomology</td>
<td>31</td>
<td>449-461</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Burgess EPJ, Malone LA, Christelier JT, Lester MT, Murray C</td>
<td>Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests, Helicoverpa armigera and Spodoptera littura</td>
<td>Transgenic Res.</td>
<td>11</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Cao J, Ibrahim H, Garcia JJ, Mason H, Granados RR, Earle ED</td>
<td>Transgenic tobacco plants carrying a baculovirus enhance gene flow and development and increase the mortality of Trichoplusia ni larvae.</td>
<td>Plant Cell Reprod.</td>
<td>21</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Carlini CR, Grossi-de-Sa MF</td>
<td>Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides</td>
<td>Toxicon</td>
<td>40</td>
<td>1515-1539</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Duan JJ, Head G, McKeve MJ, Nickson TE, Martin JW, Sayegh FS</td>
<td>Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle, Colesmeagilla maculata</td>
<td>Entomologia Experimentalis et Applicata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------------</td>
<td>------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>402</td>
<td>Federici BA</td>
<td>2002</td>
<td>Case study: Bt crops a novel mode of insect control</td>
<td>Genetically Modified Crops: Assessing Safety</td>
<td>22</td>
<td>164-200</td>
</tr>
<tr>
<td>403</td>
<td>Felke M,Lorenz N,Langenbruch GA</td>
<td>2002</td>
<td>Laboratory studies on the effects of pollen from Bt-maize on larvae of</td>
<td>J. Appl. Entomol.</td>
<td>126</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>some butterfly species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>Gatehouse AMR,Ferry NJ,Reamakers RJM</td>
<td>2002</td>
<td>The case of the monarch butterfly: a verdict is returned</td>
<td>Trends in genetics: TIG</td>
<td>18</td>
<td>249-251</td>
</tr>
<tr>
<td>407</td>
<td>Head G,Surber JB,Watson JA,Martin JW,Duan JJ</td>
<td>2002</td>
<td>No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use</td>
<td>Environmental Entomology</td>
<td>31</td>
<td>30-36</td>
</tr>
<tr>
<td>408</td>
<td>Heuer H,Kroppenstedt RM,Lottmann J,Berg G,Smalla K</td>
<td>2002</td>
<td>Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors</td>
<td>Appl. Environ. Microbiol.</td>
<td>69</td>
<td>1325</td>
</tr>
<tr>
<td>409</td>
<td>Heuer H,Kroppenstedt RM,Lottmann J,Berg G,Smalla K</td>
<td>2002</td>
<td>Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors</td>
<td>Applied and Environmental Microbiology</td>
<td>68</td>
<td>1325-1335</td>
</tr>
<tr>
<td>410</td>
<td>Jesse LCH,Obrycki JI</td>
<td>2002</td>
<td>Assessment of the non-target effects of transgenic Bt corn pollen and anthers on the milkweed tiger moth, Euchantas egle</td>
<td>J. Kans. Entomol. Soc.</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>411</td>
<td>Koskella J,Stotzky G</td>
<td>2002</td>
<td>Laminar toxins from Bacillus thuringiensis subsp. kurstaki, morrisonis (strain tenebrionis), and isoarenalensis have no microbial or microbistic activity against selected bacteria, sp.</td>
<td>Can. J. Microbiol.</td>
<td>48</td>
<td>262-267</td>
</tr>
<tr>
<td>412</td>
<td>Koskella J,Stotzky G</td>
<td>2002</td>
<td>Laminar toxins from Bacillus thuringiensis subsp. kurstaki, morrisonis (strain tenebrionis), and isoarenalensis have no microbial or microbistic activity against selected bacteria, sp.</td>
<td>Canadian Journal of Microbiology</td>
<td>48</td>
<td>262-267</td>
</tr>
<tr>
<td>413</td>
<td>Kowalchuk GA,Buma DS,de Boer W,Klinkhammer PG, van Veen JA</td>
<td>2002</td>
<td>Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms</td>
<td>Antonie Van Leeuwenhoek</td>
<td>81</td>
<td>509-20</td>
</tr>
<tr>
<td>415</td>
<td>Lundgren JG,Wiedenmann RN</td>
<td>2002</td>
<td>Coleopteran-specific Cry1Aa Toxin from Transgenic Corn Pollen Does Not Affect the Fitness of a Nontarget Species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae)</td>
<td>Environmental Entomology</td>
<td>31</td>
<td>1213-1218</td>
</tr>
<tr>
<td>416</td>
<td>Malone L,Treggela EL,Todd JH,Burgess EPJ,Philip BA</td>
<td>2002</td>
<td>Effects of ingestion of a biotin-binding protein on adult and larval honey bees</td>
<td>Apidologie</td>
<td>33</td>
<td>447</td>
</tr>
<tr>
<td>417</td>
<td>Malone LA,Pham-Delégue MH</td>
<td>2002</td>
<td>Using proteins to assess the potential impacts of genetically modified plants on honey bees</td>
<td></td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>Manachini B,Lozzia GC</td>
<td>2002</td>
<td>First investigations into the effects of Bt corn crop on Nemotaula</td>
<td>Bolletino de Zoologia Agraria e di Baccicoltura</td>
<td>34</td>
<td>85-96</td>
</tr>
<tr>
<td>419</td>
<td>Misko AL,Germida JJ</td>
<td>2002</td>
<td>Taxonomic and functional diversity of pseudomonas isolated from the roots of field-grown genetically modified canola</td>
<td>FEMS Microbiol Ecology</td>
<td>42</td>
<td>399-407</td>
</tr>
<tr>
<td>420</td>
<td>Ponsard S,Gutierrez AP,Mills NJ</td>
<td>2002</td>
<td>Effect of Bt-toxin (Cry1Ac) in Transgenic Cotton on the Adult Longevity of Four Heteropteran Predators</td>
<td>Environmental Entomology</td>
<td>31</td>
<td>1197-1205</td>
</tr>
<tr>
<td>421</td>
<td>Saxena D,Flores S,Stotzky G</td>
<td>2002</td>
<td>Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events</td>
<td>Soil Biol. Biochem.</td>
<td>34</td>
<td>133</td>
</tr>
<tr>
<td>422</td>
<td>Saxena D,Stotzky G</td>
<td>2002</td>
<td>Bt toxin is not taken up from soil or hydroponic culture by corn, carrot, radish, or turnip</td>
<td>Plant and Soil</td>
<td>239</td>
<td>165-172</td>
</tr>
<tr>
<td>423</td>
<td>Schmaalenberger A,Tebbe CC</td>
<td>2002</td>
<td>Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore</td>
<td>FEMS Microbiol Ecology</td>
<td>40</td>
<td>29-37</td>
</tr>
<tr>
<td>424</td>
<td>Setamou M,Bernal JS,Legaspi JC,Mirk TE</td>
<td>2002</td>
<td>Effects of snowdrop lectin (Galanthus nivalis agglutinin) expressed in transgenic sugarcane on fitness of Cotesia flavipes (Hyponemoptera: Braconidae), a parasitoid of the</td>
<td>Ann. Entomol. Soc. Am.</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>425</td>
<td>Setamou M,Bernal JS,Legaspi JC,Mirk TE</td>
<td>2002</td>
<td>Parasitism and location of sugarcane borer (Lepidoptera: Pyralidae) by Cotesia flavipes (Hyponemoptera: Braconidae) on transgenic and conventional sugarcane</td>
<td>Environ. Entomol.</td>
<td>31</td>
<td>1219</td>
</tr>
<tr>
<td>426</td>
<td>Stotzky G</td>
<td>2002</td>
<td>Genetically Engineered Organisms: Assessing Environmental and Human Health Effects</td>
<td></td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>Stotzky G</td>
<td>2002</td>
<td>Release, persistency, and biological activity in soil of insecticidal proteins from Bacillus thuringiensis</td>
<td>Genetically Engineered Organisms: Assessing Environmental and Human</td>
<td>187-222</td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>Temorshuizen AJ,Lotz LAP</td>
<td>2002</td>
<td>Does large-scale cropping of herbicide-resistant cultivars increase the incidence of polyphagous soil-borne plant pathogens?</td>
<td>Outlook on Agriculture</td>
<td>31</td>
<td>51-54</td>
</tr>
<tr>
<td>430</td>
<td>Tortiglione C,Fanti P,Pennacchio F,Mai V C,Breuer M</td>
<td>2002</td>
<td>The expression in tobacco plants of Aedes aegypti trypsin modulating oostatic factor (Aea-TMOF) alters growth and development of the tobacco budworm, Heliothis virescens</td>
<td>Mol. Breed.</td>
<td>9</td>
<td>159</td>
</tr>
<tr>
<td>431</td>
<td>Wandeler H,Bahylova J,Nentwig W</td>
<td>2002</td>
<td>Consumption of two Bt and six non-Bt corn varieties by the woodhouse Porcellio scaber</td>
<td>Basic and Applied Ecology</td>
<td>3</td>
<td>357-365</td>
</tr>
<tr>
<td>ID</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>495</td>
<td>Anderson PL, Heilmich RL, Sears MK, Sunserf DM, Lewis LC</td>
<td>2004</td>
<td>Effects of Cry1Ab-Expressing Corn Anthers on Monarch Butterfly Larvae</td>
<td>Environmental Entomology</td>
<td>33</td>
<td>1109-1115</td>
</tr>
<tr>
<td>496</td>
<td>Benedict JH, Ring DR</td>
<td>2004</td>
<td>Transgenic crops expressing Bt proteins: Current status, challenges and outlook</td>
<td>Transgenic Crop Protection: Concepts and Strategies</td>
<td>15</td>
<td>84</td>
</tr>
<tr>
<td>497</td>
<td>Blackwood CB, Buyer JS</td>
<td>2004</td>
<td>Soil Microbial Communities Associated with Bt and Non-Bt Corn in Three Soils</td>
<td>J. Environ. Qual.</td>
<td>33</td>
<td>832-836</td>
</tr>
<tr>
<td>498</td>
<td>Brusetti L, Fracica P, Bertolini C, Pagliuca ASB</td>
<td>2004</td>
<td>Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non-transgenic counterpart</td>
<td>Plant Soil.</td>
<td>266</td>
<td>11</td>
</tr>
<tr>
<td>499</td>
<td>Cardofi MP, Brown K, Grimm C, Reber B, Schmidli H</td>
<td>2004</td>
<td>A faunistic approach to assess potential side-effects of genetically modified Bt-Corn on non-target arthropods under field conditions</td>
<td>Biocontrol Science and Technology</td>
<td>14</td>
<td>129-170</td>
</tr>
<tr>
<td>501</td>
<td>De Maagd RA</td>
<td>2004</td>
<td>Biotechnology meets ecology</td>
<td>Genomics for Biosafety in Plant Biotechnology</td>
<td>117</td>
<td>131</td>
</tr>
<tr>
<td>503</td>
<td>Dively GP, Rose RS, Sears MK, Heilmich RL, Stanley-Horn DE, Calvin DD, Russo JM, Anderson J</td>
<td>2004</td>
<td>Effects on Monarch Butterfly Larvae (Lepidoptera: Danaiade) After Continuous Exposure to Cry1Ab-Expressing Corn During Anthesis</td>
<td>Environmental Entomology</td>
<td>33</td>
<td>1116-1125</td>
</tr>
<tr>
<td>504</td>
<td>Duan JJ, Head G, Jensen A, Reed G</td>
<td>2004</td>
<td>Effects of Transgenic Bacillus thuringiensis Potato and Conventional Insecticides for Colorado Potato Beetle (Coleoptera: Chryssomelidea) Management on the Abundance of</td>
<td>Environmental Entomology</td>
<td>33</td>
<td>275-281</td>
</tr>
<tr>
<td>507</td>
<td>Holland JM</td>
<td>2004</td>
<td>The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence</td>
<td>Agriculture, Ecosystems & Environment</td>
<td>103</td>
<td>Jan-25</td>
</tr>
<tr>
<td>508</td>
<td>Huang ZY, Hanley AV, Pett WL, Langenberger M, Duan JJ</td>
<td>2004</td>
<td>Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees</td>
<td>Journal of Economic Entomology</td>
<td>97</td>
<td>1517-1523</td>
</tr>
<tr>
<td>509</td>
<td>Ito A, Satagiri T, Kida S, Kusaka Y, Kurono K, Mastrumori K, Mizuki E, Ako T, Ohba M</td>
<td>2004</td>
<td>A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells</td>
<td>Journal of Biological Chemistry</td>
<td>279</td>
<td>21282-21286</td>
</tr>
<tr>
<td>510</td>
<td>Jung HG, Sheafter CC</td>
<td>2004</td>
<td>Influence of Bt transgenes on cell wall lignification and digestibility of maize stover for silage</td>
<td>Crop Science</td>
<td>44</td>
<td>1781-1789</td>
</tr>
<tr>
<td>511</td>
<td>Kain WC, Zhao J-Z, Jannmaat AF, Myers JS, Shelton AM, Wang P</td>
<td>2004</td>
<td>Inheritance of Resistance to Bacillus thuringiensis Cry1Ac Toxin in a Greenhouse-Derived Strain of Cabbage Looper (Lepidoptera: Noctuidae)</td>
<td>Journal of Economic Entomology</td>
<td>97</td>
<td>2073-2079</td>
</tr>
<tr>
<td>512</td>
<td>Li H, Gonzalez-Cabrera J, Oppert B, Ferr J, Higgins RA, Buschman LL, Radke GA, Zhu KY, Huang F</td>
<td>2004</td>
<td>Binding analyses of Cry1AB and Cry1Ac with membrane vesicles from Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis</td>
<td>Biochemical and Biophysical Research Communications</td>
<td>327</td>
<td>52-57</td>
</tr>
<tr>
<td>513</td>
<td>Lumbierres B, Albajes R, Pons X</td>
<td>2004</td>
<td>Transgenic Bt maize and Rhopalosiphum padi (Hor., Aphididae) performance</td>
<td>Ecological Entomology</td>
<td>29</td>
<td>309-317</td>
</tr>
<tr>
<td>514</td>
<td>Lundgren JG, Wiedenmann RN</td>
<td>2004</td>
<td>Nutritional suitability of corn pollen for the predator Coleomegilla maculata (Coleoptera: Coccinellidae)</td>
<td>Journal of Insect Physiology</td>
<td>50</td>
<td>567-575</td>
</tr>
<tr>
<td>515</td>
<td>Malone LA, Todd JH, Burgess EP, Christaller JT</td>
<td>2004</td>
<td>Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor</td>
<td>Apidologie</td>
<td>35</td>
<td>655-664</td>
</tr>
<tr>
<td>518</td>
<td>Men X, Ge F, Edwards C, Yardin E</td>
<td>2004</td>
<td>Influence of pesticide applications on pest and predatory arthropods associated with transgenic &/I egtBi1; &/I gt; cotton and nontransgenic cotton plants</td>
<td>Phytoparasitica</td>
<td>32</td>
<td>246-254</td>
</tr>
<tr>
<td>520</td>
<td>O’Callaghan M, Gerard EM, Waipara NW, Young SD, Gilre TB</td>
<td>2004</td>
<td>Microbial communities of Solarium tuberosum and magainin-producing transgenic lines</td>
<td>Plant Soil.</td>
<td>266</td>
<td>47</td>
</tr>
<tr>
<td>521</td>
<td>O’Callaghan M, Gilre TR, Burgess EPU, Malene LA</td>
<td>2004</td>
<td>EFFECTS OF PLANTS GENETICALLY MODIFIED FOR INSECT RESISTANCE ON NONTARGET ORGANISMS</td>
<td>Annual Review of Entomology</td>
<td>50</td>
<td>271-292</td>
</tr>
<tr>
<td>522</td>
<td>Romies J, Dutojn A, Bigler F</td>
<td>2004</td>
<td>Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae)</td>
<td>Journal of Insect Physiology</td>
<td>50</td>
<td>175-183</td>
</tr>
<tr>
<td>523</td>
<td>Saxena D, Stewart CN, Alloasaar I, Shu Q, Stolzky G</td>
<td>2004</td>
<td>Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis carinae, cotton, and tobacco</td>
<td>Plant Physiology and Biochemistry</td>
<td>42</td>
<td>383-387</td>
</tr>
<tr>
<td>524</td>
<td>Sayyed AH, Raymond B, Ibiza-Palacios MS, Escruche B, Wright Du</td>
<td>2004</td>
<td>Genetic and Biochemical Characterization of Field Evolved Resistance to Bacillus thuringiensis Toxin Cry1Ac in the Diamondback Moth, Plutella xylostella</td>
<td>Applied and Environmental Microbiology</td>
<td>70</td>
<td>7010-7017</td>
</tr>
<tr>
<td>Reference</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuler TH,Denholm I,Clark SJ,Stewart CN,Poppy GM</td>
<td>2004</td>
<td>Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt resistant larvae of the diamondback moth</td>
<td>Journal of Insect Physiology</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>526 Sietsma MS,Biggs RW,Olson C,Carrère Y,Dennery TJ,Tabashnik BE</td>
<td>2004</td>
<td>Arthropod Abundance and Diversity in Bt and Non-Bt Cotton Fields</td>
<td>Environmental Entomology</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>527 Stotzky G</td>
<td>2004</td>
<td>Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants</td>
<td>Plant Soil.</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>528 Tabashnik BE,Carrère Y</td>
<td>2004</td>
<td>Bt transgenic crops do not have favorable effects on resistant insects</td>
<td>Journal of Insect Science</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530 Turniti A,Strana C,Nuti MP,Pietranelli B,Giovannetti M</td>
<td>2004</td>
<td>Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi</td>
<td>Plant Soil.</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>531 Wei-Xiang W,Qing-Fu Y,Hang M,Xue-Jun D,Wen-Ming J</td>
<td>2004</td>
<td>Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil</td>
<td>Soil Biology and Biochemistry</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>532 Wu WX, Ye QF,Min H</td>
<td>2004</td>
<td>Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil</td>
<td>European Journal of Soil Biology</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>534 Ahmad A,Wilde GE,Zhu KY</td>
<td>2005</td>
<td>Detectability of Coleoptera-specific Cry1Bb1 Protein in Soil and Its Effect on Non-target Surface and Below-Ground Arthropods</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535 Apáš K,Tóth F,Kiss J</td>
<td>2005</td>
<td>Foliage-dwelling arthropods in Bt-transgenic and isogenic maize: a comparison through spider web analysis</td>
<td>Acta Phytopathologica et Entomologica Hungarica</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>536 Babendreier D,Kaiserer NM,Romeis J,Fluri P,Muilligan E,Bigger F</td>
<td>2005</td>
<td>Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees</td>
<td>Apidologie</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>537 Bai YY,Jiang MX,Ceng JA</td>
<td>2005</td>
<td>Effects of transgenic cry1Ab rice pollen on fitness of Propylea japonica (Thunberg)</td>
<td>Journal of Pest Science</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>538 Baumgarte S,Tebbe CC</td>
<td>2005</td>
<td>Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere</td>
<td>Molecular Ecology</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>539 Baumgarte S,Tebbe CC</td>
<td>2005</td>
<td>Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere</td>
<td>Molecular Ecology</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540 Bhati MA,Duan J,Head G,Jiang C,McKee MJ,Pitcher CL,Pitcher CD</td>
<td>2005</td>
<td>Field Evaluation of the Impact of Corn Rootworm (Coleoptera: Chrysomelidae)-Protected Bt Corn on Ground-Dwelling Invertebrates</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541 Bhati MA,Duan J,Head G,Jiang C,McKee MJ,Pitcher CL,Pitcher CD</td>
<td>2005</td>
<td>Field Evaluation of the Impact of Corn Rootworm (Coleoptera: Chrysomelidae)-Protected Bt Corn on Foliage-Dwelling Arthropods</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>542 Blitzer RJ,Rice ME,Pitcher CL,Pitcher CL,Lam W-L</td>
<td>2005</td>
<td>Biodiversity and Community Structure of Epedaphic and Euedaphic Springtails (Collembola) in Transgenic Rootworm Bt Corn</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544 Brimmer TA,Gallivan GJ,Stephenson GR</td>
<td>2005</td>
<td>Influence of herbicide-resistant canola on the environmental impact of weed management</td>
<td>Pest Management Science</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545 Brusetti LF,Francia P,Bertolini C,Pagliuca A,Borin S,Strini C,Abruzzese A,Sacchi G,Valitutti</td>
<td>2005</td>
<td>Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays), and its non transgenic counterpart</td>
<td>Plant and Soil</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547 Clark BW,Phillips TA,Coats JR</td>
<td>2005</td>
<td>Environmental Fate and Effects of Bacillus thuringiensis (Bt) Proteins from Transgenic Crops: a Review</td>
<td>Journal of agricultural and food chemistry</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>548 Daly T,Buntin GD</td>
<td>2005</td>
<td>Effect of Bacillus thuringiensis Transgenic Corn for Lepidopteran Control on Non-target Arthropods</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550 Dively GP</td>
<td>2005</td>
<td>Impact of Transgenic VIP3A Cry1Ab Lepidopteran-resistant Field Corn on the Non-target Arthropod Community</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551 Douville M,Gagné F,Masson L,McKay J,Blaise C</td>
<td>2005</td>
<td>Tracking the source of Bacillus thuringiensis Cry1Ab endotoxin in the environment</td>
<td>Biochemical Systematics and Ecology</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>552 Dubelman S,Ayden BR,Bader BM,Brown CR,Jiang C,Vlachos D</td>
<td>2005</td>
<td>Cry1Ab Protein Does Not Persist in Soil After 3 Years of Sustained Bt Corn Use</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>553 Dutton A,Romeis J,Bigler F</td>
<td>2005</td>
<td>Effects of Bt maize expressing Cry1Ab and Bt spray on Spodoptera littoralis</td>
<td>Entomologia Experimentalis et Applicata</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554 Fang M,Kremer RJ,Matovalli PP,Davis G</td>
<td>2005</td>
<td>Bacterial Diversity in Rhizospheres of Nontransgenic and Transgenic Corn</td>
<td>Appl Environ Microbiol</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>555 Flores S, Saxena D,Stotzky G</td>
<td>2005</td>
<td>Transgenic Bt plants decompose less in soil than non-Bt plants</td>
<td>Soil Biology and Biochemistry</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Volume</td>
<td>Issue</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>556</td>
<td>A Comparison of Soil Microbial Community Structure, Protozoa and Nematodes in Field Plots of Conventional and Genetically Modified Maize Expressing the Bacillus thuringiensis Cry1Ab</td>
<td>Griffiths BS,Caul S,Thompson J,Birch ANE,Scrimgeour C,Andersen MN,Cortez J,Meissle M</td>
<td>2005</td>
<td>1317-1324</td>
<td>30</td>
<td>135-146</td>
</tr>
<tr>
<td>558</td>
<td>Persistence and impact on microorganisms of Bacillus thuringiensis proteins in some Zimbabwean soils</td>
<td>Muchasanya P,Waladde S,Yamaguchi S, Mpsereki S, Ristow GG</td>
<td>2005</td>
<td>577</td>
<td>573</td>
<td>1-3</td>
</tr>
<tr>
<td>559</td>
<td>Effects of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to pre-yield mediated Bt toxin</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>560</td>
<td>Comparing methods to evaluate the effects of Bt maize and non-Bt cotton fields on the function of the natural enemy community</td>
<td>Naranjo SE</td>
<td>2005</td>
<td>123-132</td>
<td>10-11</td>
<td>7-9</td>
</tr>
<tr>
<td>561</td>
<td>The impacts of the pollen of insect-resistant Transgenic Cotton on honeybees</td>
<td>Liu B,Xu C,Yan F,Gong R</td>
<td>2005</td>
<td>3487-3496</td>
<td>13-14</td>
<td>1-3</td>
</tr>
<tr>
<td>562</td>
<td>A Comparison of Soil Microbial Community Structure, Protozoa and Nematodes in Field Plots of Conventional and Genetically Modified Maize Expressing the Bacillus thuringiensis Cry1Ab</td>
<td>Griffiths BS,Caul S,Thompson J,Birch ANE,Scrimgeour C,Andersen MN,Cortez J,Meissle M</td>
<td>2005</td>
<td>1333-1340</td>
<td>116</td>
<td>1-3</td>
</tr>
<tr>
<td>563</td>
<td>Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops</td>
<td>Mattila HR,Sears MK,Duan JJ</td>
<td>2005</td>
<td>275</td>
<td>129-130</td>
<td>1-3</td>
</tr>
<tr>
<td>564</td>
<td>Effects of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to pre-yield mediated Bt toxin</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>565</td>
<td>The impacts of the pollen of insect-resistant Transgenic Cotton on honeybees</td>
<td>Liu B,Xu C,Yan F,Gong R</td>
<td>2005</td>
<td>3487-3496</td>
<td>13-14</td>
<td>1-3</td>
</tr>
<tr>
<td>566</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>567</td>
<td>Effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>568</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>569</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>570</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>571</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>572</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>573</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>574</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>575</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>576</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>577</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>578</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>579</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>580</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>581</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>582</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>583</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>584</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>585</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>586</td>
<td>The effects of Bt maize on non-target pests, Aphis gossypii Glover</td>
<td>Obrist Lb,Klein H,Dutton A,Bigler F</td>
<td>2005</td>
<td>401-406</td>
<td>101-107</td>
<td>7-9</td>
</tr>
<tr>
<td>ID</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal/Conference</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>587</td>
<td>Pilcher CD, Rice ME, Obrycki JJ</td>
<td>2005</td>
<td>Impact of Transgenic Bacillus thuringiensis Corn and Crop Phenology on Five Nontarget Arthropods</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>589</td>
<td>Pons X, Lumberres B, Lopez C, Alberge R</td>
<td>2005</td>
<td>Abundance of non-target pests in transgenic Bt maize: a farm scale study</td>
<td>European Journal of Entomology</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Pont B, Nentwig W</td>
<td>2005</td>
<td>Quantification of Bt protein digestion and excretion by the primary decomposer Porcello scaber, fed with two Bt-corn varieties</td>
<td>Biocontrol Science and Technology</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>Qaim M, Traxler G</td>
<td>2005</td>
<td>Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects</td>
<td>Agricultural Economics</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>Rui YK, Yi QX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li QX</td>
<td>2005</td>
<td>Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria</td>
<td>World Journal of Microbiology and Biotechnology</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>593</td>
<td>Schulier TH, Clark AJ, Clark SJ, Poppy GM, Stewart CN, Jr., Denholm I</td>
<td>2005</td>
<td>Laboratory studies of the effects of reduced prey choice caused by Bt plants on a predatory insect</td>
<td>Bulletin of Entomological Research</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>594</td>
<td>Shirai Y, Takahashi M</td>
<td>2005</td>
<td>Effects of transgenic Bt corn pollen on a non-target lycaenid butterfly, <i>Pseudolista maha</i></td>
<td>Applied Entomology and Zoology</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>595</td>
<td>Stotzky G</td>
<td>2005</td>
<td>Persistence and biological activity in soil of the insecticidal proteins from Bt<sup>a</sup><gt;bacillus thuringiensis</gt;<i>, especially from transgenic plants</td>
<td>Plant and Soil</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>596</td>
<td>Stotzky G</td>
<td>2005</td>
<td>Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants</td>
<td>Plant and Soil</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>Strandberg B, Bruus Pedersen M, Eriegaard N</td>
<td>2005</td>
<td>Weed and arthropod populations in conventional and genetically modified herbicide tolerant fodder beet fields</td>
<td>Agriculture, Ecosystems & Environment</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>Tabashnik BE, Dennehny TJ, Carrière Y</td>
<td>2005</td>
<td>Delayed Resistance to Transgenic Cotton in Pink Bollworm</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>Torres JB, Ruberson JR</td>
<td>2005</td>
<td>Canopy- and Ground-Dwelling Predator Arthropods in Commercial Bt and non-Bt Cotton Fields: Patterns and Mechanisms</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Tounouos AK, Gournou S, Borgermeister C, Gournedzoe YMD, Schultz F</td>
<td>2005</td>
<td>Susceptibility of Edana saccharina (Lepidoptera: Pyralidae), Busseola fusca and Sesamia calamistis (Lepidoptera: Noctuidae) to Bacillus thuringiensis Cry toxins and potential</td>
<td>Biocontrol Science and Technology</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Turlings TCJ, Jeannourquin PM, Held M, De Gen T</td>
<td>2005</td>
<td>Evaluating the induced-emission of a Bt maize and its attractiveness to parasitic wasps</td>
<td>Transgenic Research</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Tumini A, Strana C, Nuti MP, Pietrangeli BM, Giovannetti M</td>
<td>2005</td>
<td>Development of a model system to assess the impact of genetically modified corn and suberine plants on anarbus mycorrhizal fungi</td>
<td>Transgenic Research</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>Vojtech E, Meissle M, Poppy GM</td>
<td>2005</td>
<td>Effects of Bt maize on the herbivore Spodoptera litoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Bracidae)</td>
<td>Transgenic Research</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Whitehouse MEA, Wilson LJ, Fit GP</td>
<td>2005</td>
<td>A Comparison of Arthropod Communities in Transgenic Bt and Conventional Cotton in Australia</td>
<td>Environmental Entomology</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Wirth MC, Park H-W, Walton WE, Federici BA</td>
<td>2005</td>
<td>Cry1A of Bacillus thuringiensis Delays Evolution of Resistance to Cry11A in the Mosquito Culex quinquefasciatus</td>
<td>Applied and Environmental Microbiology</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>Xue K, Luo HF, Qi Y, Zhang HK</td>
<td>2005</td>
<td>Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA</td>
<td>Journal of Environmental Sciences</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>Zemkova Rovenska G, Zemek R, Schmidt JEU, Hilbeck A</td>
<td>2005</td>
<td>Altered host plant preference of Tetranychus urticae and prey preference of its predator <i>Phytoseiulus persimilis</i> (Acari: <i>Tetranychidae</i>, <i>Phytoseiidae</i>) on transgenic Cry3B1-expressing plants</td>
<td>Biological Control Research</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>Accinelli C, Koskinen WC, Michael JS</td>
<td>2006</td>
<td>Influence of Cry1Ac Toxin on Mineralization and Bioavailability of Glyphosate in Australia</td>
<td>Journal of Agricultural Food Chem</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>611</td>
<td>Adamczyk JJ, Hubbard D</td>
<td>2006</td>
<td>Changes in Populations of Heliothis virescens (F.) (Lepidoptera: Noctuidae) and Helicoverpa zea (Brassidae) (Lepidoptera: Noctuidae) in the Mississippi Delta from 1986 to 2005 as</td>
<td>Journal of Economic Entomology</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Ahmad A, Wilde GE, Whitworth RJ, Zolnerowich G</td>
<td>2006</td>
<td>Effect of corn hybrids expressing the coleopteran-specific cry3B1 protein for corn rootworm control on aboveground insect predators</td>
<td>Journal of Economic Entomology</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>613</td>
<td>Ahmad A, Wilde GE, Zhu KY</td>
<td>2006</td>
<td>Evaluation of Effects of Coleopteran-Specific Cry3B1 Protein on Earthworms Exposed to Soil Containing Corn Roots or Biomass</td>
<td>Environmental Entomology</td>
<td>976-985</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>Bai YY, Jiang MX, Cheng JA, Wang D</td>
<td>2006</td>
<td>Effects of Cry1Ab Toxin on Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) Through Its Prey, Nilaparvata lugens Stål (Homoptera: Delphacidae), Feeding on Transgenic CBB.</td>
<td>Environmental Entomology</td>
<td>1130-1136</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>Broderick NA, Rafta KF, Handelman J</td>
<td>2006</td>
<td>Midgut bacteria required for Bacillus thuringiensis insecticidal activity</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
<td>15196-15199</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring the Cry1Ab susceptibility of European corn borer in experiment Bt cotton plants

Effect of Transgenic Bt Rice on the Survival of Three Nontarget Herbivores in Experimental Fields

Loss of Agro-biodiversity: Biodiversity, Uncertainty, and Perceived Control: A Comparative Risk Perception Study in Austria and China

Bioassays of the European corn borer, Ostrinia nubilalis, on Bt and nonBt cotton

Impact of Bt Rice on the Diplopod Allajulus latestriatus

The effects of GMHT crops on bird abundance in arable fields in southern Sweden

Early instar response to plant-delivered Bt-toxin in a herbivore (Spodoptera litura) and a predator (Propylaea japonica)

The effects of GMHT crops on bird abundance in arable fields in the UK

Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera: Miridae)—A case study of the compatibility of Bt rice with pest and predator species

The potential of Bacillus thuringiensis Cry toxin expression on non-target species in experimental fields

The effect of single-gene and dual-gene Bt broccoli on the endoparasitoid Pteromalus puparum (Hymenoptera: Chalcidoidea: Pteromalidae)

Biological Activity of Cry1 Ab Toxin Expressed by Bt Maize Following Ingestion by Herbivorous Arthropods and Exposure of the Predator Chrysoperla carnea

Evaluating the effects of Bt Maize on the predatory mite Neoseiulus cucumeris

Effects of Bt cry1Ac on Propylaea japonica Thunberg (Coleoptera: Coccinellidae) Through Its Aphid Prey Feeding on Bt Plants

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

Analyses of Cry1Ab-binding in Resistant and Susceptible Strains of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

Transgenic crops expressing Bacillus thuringiensis toxins and biological control

Monitoring the Cry1Ab susceptibility of European corn borer in Germany

The effects of GMHT crops on bird abundance in arable fields in southern Sweden

Early instar response to plant-delivered Bt-toxin in a herbivore (Spodoptera litura) and a predator (Propylaea japonica)

The effects of GMHT crops on bird abundance in arable fields in the UK

Monitoring the Cry1Ab susceptibility of European corn borer in experiment Bt cotton plants

Effects of Bt-toxin Cry1Ac on Propylaea japonica Thunberg (Coleoptera: Coccinellidae) Through Its Aphid Prey Feeding on Bt Plants

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

Analyses of Cry1Ab-binding in Resistant and Susceptible Strains of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

Transgenic crops expressing Bacillus thuringiensis toxins and biological control

Monitoring the Cry1Ab susceptibility of European corn borer in Germany

The effects of GMHT crops on bird abundance in arable fields in southern Sweden

Early instar response to plant-delivered Bt-toxin in a herbivore (Spodoptera litura) and a predator (Propylaea japonica)

The effects of GMHT crops on bird abundance in arable fields in the UK

Monitoring the Cry1Ab susceptibility of European corn borer in experiment Bt cotton plants

Effects of Bt-toxin Cry1Ac on Propylaea japonica Thunberg (Coleoptera: Coccinellidae) Through Its Aphid Prey Feeding on Bt Plants

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

Analyses of Cry1Ab-binding in Resistant and Susceptible Strains of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

Transgenic crops expressing Bacillus thuringiensis toxins and biological control

Monitoring the Cry1Ab susceptibility of European corn borer in Germany

The effects of GMHT crops on bird abundance in arable fields in southern Sweden

Early instar response to plant-delivered Bt-toxin in a herbivore (Spodoptera litura) and a predator (Propylaea japonica)

The effects of GMHT crops on bird abundance in arable fields in the UK
<table>
<thead>
<tr>
<th>ID</th>
<th>Authors</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>711</td>
<td>Toschki A, Hothorn LA, Ross-Nickel M</td>
<td>2007</td>
<td>Effects of cultivation of genetically modified Bt maize on epigeic arthropods (Araeaneae; Carabidae)</td>
<td>Environmental Entomology</td>
</tr>
<tr>
<td>715</td>
<td>Zwahlen C, Hilbeck A, Nentwig W</td>
<td>2007</td>
<td>Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates</td>
<td>Plant and Soil</td>
</tr>
<tr>
<td>716</td>
<td>Alvarez-Ataígama F, Ferry N, Castañera P, Ortega F, Gatehouse AMP</td>
<td>2008</td>
<td>Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punticillum Weise (Coleoptera: Coccinellidae)</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>717</td>
<td>Andreote P.D., Mendes R.D., Andreote F, Rossetto PB, Labate CA, Pizzirani-Kleener AA, Etias</td>
<td>2008</td>
<td>Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development</td>
<td>Antonie Van Leeuwenhoek</td>
</tr>
<tr>
<td>718</td>
<td>Babendreier D, Reichharti B, Romeis J, Böger F</td>
<td>2008</td>
<td>Impact of insecticidal proteins expressed in transgenic plants on tumbelinee microcrotopods</td>
<td>Entomologia Experimentalis et Applicata</td>
</tr>
<tr>
<td>720</td>
<td>Bravo A, Seibert M</td>
<td>2008</td>
<td>How to cope with insect resistance to Bt toxins?</td>
<td>Trends in Biototechnology</td>
</tr>
<tr>
<td>723</td>
<td>Duan JJ, Marvier M, Huesing J, Dively G, Hwang ZY</td>
<td>2008</td>
<td>Assessing the Risk to NonTarget Organisms from Bt Corn Resistant to Corn Rootworms (Coleoptera: Chrysomelidae): Tier I Testing with Oryzae insidiosus (Heteroptera: Anthocoridae)</td>
<td>Environmental Entomology</td>
</tr>
<tr>
<td>724</td>
<td>Duan JJ, Texeira D, Huesing JC, Jiang G</td>
<td>2008</td>
<td>Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize</td>
<td>PLoS ONE</td>
</tr>
<tr>
<td>725</td>
<td>Ermit L, Rosembrock-Kristel H, Kirchhoff G, Bieber E, Giunaschwili N, Müller</td>
<td>2008</td>
<td>Investigation of the soil, rhizosphere and transgenic gluten to-r-resistant rape and maize plants in combination with herbicide (Basta) application under field conditions</td>
<td>Zeitschrift Für Naturforschung. J. Journal of Biosciences</td>
</tr>
<tr>
<td>727</td>
<td>Filion M</td>
<td>2008</td>
<td>Do transgenic plants affect rhizobacteria populations?</td>
<td>Microbial Biotechnology</td>
</tr>
<tr>
<td>728</td>
<td>Guo J-Y, Wan F-H, Dong LL, Liwei GL, Han Z-J</td>
<td>2008</td>
<td>Tri-trophic interactions between Bt cotton, the herbivore Aphis gossypii Glover (Homoptera: Aphididae), and the predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae)</td>
<td>Entomological Entomology</td>
</tr>
<tr>
<td>730</td>
<td>Itoz I, Saxena D, Andow DA, Zwahlen C, Stotzky G</td>
<td>2008</td>
<td>Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis</td>
<td>Journal of Environmental Quality</td>
</tr>
<tr>
<td>731</td>
<td>Itoz I, Stotzky G</td>
<td>2008</td>
<td>Fate and effects of insect-resistant Bt crops in soil ecosystems</td>
<td>Soil Biology and Biochemistry</td>
</tr>
<tr>
<td>733</td>
<td>Kletter GA, Harris C, Stephenson G, Linsworth J</td>
<td>2008</td>
<td>Comparison of herbicide regimes and the associated potential environmental effects of glyphosate - resistant crops versus what they replace in Europe</td>
<td>Pest Management Science</td>
</tr>
<tr>
<td>734</td>
<td>Kumar S, Chandra A, Pandey KC</td>
<td>2008</td>
<td>Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy</td>
<td>Journal of Environmental Biology / Academy of Environmental Biology, India</td>
</tr>
<tr>
<td>735</td>
<td>Lawo NC, Romeis J</td>
<td>2008</td>
<td>Assessing the utilization of a carbohydrate food source and the impact of insecticidal proteins on larvae of the green lacewing, Crysopa carnea</td>
<td>Biological Control</td>
</tr>
<tr>
<td>736</td>
<td>Lewandowski A, Görecka J</td>
<td>2008</td>
<td>Effect of Transgenic Maze Mon 810 on Selected Non-Target Organisms: The Bird Cherry-Oat Aphid (Rhopalosiphum padi L.) and its Predator - Green Lacewing (Crypsopa carnea Stehch.)</td>
<td>Vegetable Crops Research Bulletin</td>
</tr>
<tr>
<td>737</td>
<td>Li Y, Meiselle M, Romeis J</td>
<td>2008</td>
<td>Consumption of Bt Maze Pollen Expressing Cry1Ab or Cry3Ba1 Does Not Harm Adult Green Lacewings, Crysopa carnea (Neuroptera: Chrysopidae)</td>
<td>PLoS ONE</td>
</tr>
<tr>
<td>738</td>
<td>Mehtis LN, Highton ML, Siegfried BD, Miller NJ, Sappington TW, Eitasse MB, Spencer</td>
<td>2008</td>
<td>Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
</tr>
<tr>
<td>739</td>
<td>Moser SE, Harwood JD, Obrycki JJ, Cargill MA</td>
<td>2008</td>
<td>Larval feeding on Bt hybrid and non-Bt corn seedlings by Harmonia axyridis (Coleoptera: Coccinellidae) and Coleomegilla maculata (Coleoptera: Coccinellidae)</td>
<td>Environmental Entomology</td>
</tr>
<tr>
<td>740</td>
<td>Oliveira AP, Pampulha ME, Bennett JP</td>
<td>2008</td>
<td>A two-year field study with transgenic Bacillus thuringiensis maize: Effects on soil microorganisms</td>
<td>Science of The Total Environment</td>
</tr>
<tr>
<td>741</td>
<td>Oliver KL, Hamelin RC, Hintz WE</td>
<td>2008</td>
<td>Effects of Transgenic Hybrid Asper Overexpressing Polyphenol Oxidase on Rhizosphere Diversity</td>
<td>Applied and Environmental Microbiology</td>
</tr>
<tr>
<td>ID</td>
<td>Title</td>
<td>Year</td>
<td>Journal</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>742</td>
<td>Owen MDK</td>
<td>2008</td>
<td>Weed species shifts in glyphosate-resistant crops</td>
<td>64</td>
</tr>
<tr>
<td>743</td>
<td>Priestley AL, Brownbridge M</td>
<td>2008</td>
<td>Field trials to evaluate effects of Bt-transgenic silage corn expressing the Cry1Ab insecticidal toxin on non-target soil arthropods in northern New England, USA</td>
<td>452-443</td>
</tr>
<tr>
<td>744</td>
<td>Prihoda KR, Coats JR</td>
<td>2008</td>
<td>Aquatic fate and effects of Bacillus thuringiensis Cry3Bb1 protein: toward risk assessment</td>
<td>793-798</td>
</tr>
<tr>
<td>745</td>
<td>Prihoda KR, Coats JR</td>
<td>2008</td>
<td>Fate of Bacillus thuringiensis (Bt) Cry3Bb1 protein in a soil microcosm</td>
<td>Chemosphere</td>
</tr>
<tr>
<td>746</td>
<td>Ramirez-Romero R, Desneux N, Chauvel J, Kaiser L</td>
<td>2008</td>
<td>BT-maize effects on biological parameters of the non-target aphid Stictobius variegatus (Homoptera: Aphididae) and Cry1Ab toxin detection</td>
<td>Pesticide Biochemistry and Physiology</td>
</tr>
<tr>
<td>749</td>
<td>Sayed AH, Moores G, Crichton N, Wright DJ</td>
<td>2008</td>
<td>Cross - resistance between a Bacillus thuringiensis Cry toxin and non - Bt insecticides in the diamondback moth</td>
<td>Pest Management Science</td>
</tr>
<tr>
<td>750</td>
<td>Sharma HC, Dhillon MK, Arora R</td>
<td>2008</td>
<td>Effects of Bacillus thuringiensis-endotoxin-fed Helicoverpa armigera on the survival and development of the parasitoid Campina chloridea</td>
<td>Entomologia Experimentalis et Applicata</td>
</tr>
<tr>
<td>751</td>
<td>Shu Y, Ma H, Du Y, Li Z, Feng Y, Wang J</td>
<td>2008</td>
<td>The presence of Bacillus thuringiensis (Bt) protein in earthworms Eisenia fetida has no deleterious effects on their growth and reproduction</td>
<td>Chemosphere</td>
</tr>
<tr>
<td>752</td>
<td>Squire GR, Hawes C, Begg GS, Young MW</td>
<td>2008</td>
<td>Cumulative impact of GM herbicide tolerance cropping on arable plants assessed through species-based and functional taxonomies</td>
<td>Environmental Science and Pollution Research</td>
</tr>
<tr>
<td>753</td>
<td>Storer NP, Dively GP, Herman RA</td>
<td>2008</td>
<td>Landscape Effects of Insect-Resistant Genetically Modified Crops</td>
<td>Integration of Insect-Resistant Genetically Modified Crops within IPM Programs</td>
</tr>
<tr>
<td>754</td>
<td>Torres JB, Ruberson JR</td>
<td>2008</td>
<td>Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>755</td>
<td>Van Overbeek L, Van Elsas JD</td>
<td>2008</td>
<td>Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)</td>
<td>FEMS Microbiology Ecology</td>
</tr>
<tr>
<td>758</td>
<td>Wu K, Mu Y, Y, Feng H, Q, Jiang Y, Y, Zhao J-Z</td>
<td>2008</td>
<td>Suppression of Cotton Bollworm in Multiple Crops in China in Areas with Bt Toxin–Containing Cotton</td>
<td>Science</td>
</tr>
<tr>
<td>760</td>
<td>Zhang G, F, Wan F, H, Murphy ST, Guo J, Y, Liu W, X</td>
<td>2008</td>
<td>Reproductive biology of two nontarget insect species, Aphis gossypii (Homoptera: Aphididae) and Otiorhiza sauteri (Hemiptera: Anthocoridae), on Bt and non-Bt cotton cultivars</td>
<td>Environmental Entomology</td>
</tr>
<tr>
<td>761</td>
<td>Albajes R, Lumierrez B, Pons X</td>
<td>2009</td>
<td>Responsiveness of Arthropod Herbivores and Their Natural Enemies to Modified Weed Management in Corn</td>
<td>Environmental Entomology</td>
</tr>
<tr>
<td>762</td>
<td>Álvarez-Alfageme F, Ortega F, Castañera P</td>
<td>2009</td>
<td>BT maize fed-preg mediated effect on fitness and digestive physiology of the ground predator Poecilus cupreus L. (Coleoptera: Carabidae)</td>
<td>Journal of Insect Physiology</td>
</tr>
<tr>
<td>764</td>
<td>Brévault T, Prudent P, Vaissaye M, Carrière Y</td>
<td>2009</td>
<td>Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry1Ac and Cry2Ab Insecticidal Proteins in Four Countries of the West African Cotton Belt</td>
<td>Journal of Economic Entomology</td>
</tr>
<tr>
<td>768</td>
<td>Crespo ALB, Spencer TA, Alves AP, Helmsch RL, Blankenship EE, Magalhães LC, Segnfeld BD</td>
<td>2009</td>
<td>On - plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a - derived strain of European corn borer, Ostrinia nubilalis</td>
<td>Pest Management Science</td>
</tr>
<tr>
<td>769</td>
<td>Dhillon MK, Sharma HC</td>
<td>2009</td>
<td>Effects of Bacillus thuringiensis 6-endotoxins Cry1Ab and Cry1Ac on the coleoptilid beetle, Chelomelium sexmaculatus (Coleoptera: Coccinellidae) under direct and indirect exposure</td>
<td>Biocontrol Science and Technology</td>
</tr>
<tr>
<td>770</td>
<td>Dowsen S, Parker TL, Mahon RJ</td>
<td>2009</td>
<td>Frequency of Alleles Conferring Resistance to the Bacillus thuringiensis Toxins Cry1Ac and Cry2Ab in Australian Populations of Helicoverpa punctigera (Lepidoptera: Noctuidae)</td>
<td>Journal of Economic Entomology</td>
</tr>
</tbody>
</table>

Note: The table above lists various research studies related to the effects of Bacillus thuringiensis cry toxins on non-target species and the ecological impacts of genetically modified crops.
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>775</td>
<td>Adaptation and Invasiveness of Western Corn Rootworm: Intensifying Research on a Worsening Pest*</td>
<td>Gray ME, Sappington TW, Miller NJ, Moeser JR, Bohn MO</td>
<td>2009</td>
<td>Annual Review of Entomology</td>
<td>54</td>
<td>303-321</td>
</tr>
<tr>
<td>776</td>
<td>Impact of MON863 transgenic roots is equivalent on western corn rootworm larvae for a wide range of maize phenologies</td>
<td>Hibbard BE, Kishish AA, Vaughn TT</td>
<td>2009</td>
<td>Journal of Economic Entomology</td>
<td>102</td>
<td>1607-1613</td>
</tr>
<tr>
<td>778</td>
<td>Are survival and reproduction of Enchytraeus albidus (Annelida: Enchytraeidae) at risk by feeding on Bt-maize litter?</td>
<td>Hönnemann L, Nentwig W</td>
<td>2009</td>
<td>European Journal of Soil Biology</td>
<td>45</td>
<td>351-355</td>
</tr>
<tr>
<td>779</td>
<td>Protease activities in the midgut of Western corn rootworm (Diabrotica virgifera virgifera LeConte)</td>
<td>Kaiser-alexrat R</td>
<td>2009</td>
<td>Journal of Invertebrate Pathology</td>
<td>100</td>
<td>169-174</td>
</tr>
<tr>
<td>780</td>
<td>Native Resistance to Western Corn Rootworm (Coleoptera: Chrysomelidae) Larval Feeding: Characterization and Mechanisms</td>
<td>Kishish AAE, Bohn MO, Prischmann-Voldseth DA, Daahiami KE, French</td>
<td>2009</td>
<td>Journal of Economic Entomology</td>
<td>102</td>
<td>2350-2359</td>
</tr>
<tr>
<td>782</td>
<td>Transgenic maize as vital components of integrated pest management</td>
<td>Kos M, van Loon-JA, Dicke M, Vet LEM</td>
<td>2009</td>
<td>Trends in Biotechnology</td>
<td>27</td>
<td>621-627</td>
</tr>
<tr>
<td>785</td>
<td>Impact of coleopteran targeting toxin (Cry3Bb1) of Bt corn on microbially mediated decomposition</td>
<td>Lawhorn CN, Neher DA, Dively GP</td>
<td>2009</td>
<td>Applied Soil Ecology</td>
<td>41</td>
<td>364-368</td>
</tr>
<tr>
<td>786</td>
<td>Indian Bt Cotton Varieties Do Not Affect the Performance of Cotton Aphis</td>
<td>Lawe NC, Wackers FL, Romeis J</td>
<td>2009</td>
<td>PLoS ONE</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>787</td>
<td>Plant fitness assessment for wild relatives of insect resistant crops</td>
<td>Letourneau DK, Hagen JA</td>
<td>2009</td>
<td>Environmental Biosafety Research</td>
<td>8</td>
<td>45-55</td>
</tr>
<tr>
<td>790</td>
<td>Activity of Bacillus thuringiensis hybrid protein against a lepidopteran and a coleopteran pest</td>
<td>López - Pazos SA, Arias R, Carolina A, Sopina SA, Cerón J</td>
<td>2009</td>
<td>FEBS Microbiology Letters</td>
<td>302</td>
<td>93-98</td>
</tr>
<tr>
<td>791</td>
<td>Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies</td>
<td>Lövei GL, Andow DA, Arpaia S</td>
<td>2009</td>
<td>Environmental Entomology</td>
<td>38</td>
<td>293-306</td>
</tr>
<tr>
<td>792</td>
<td>Limited survival of a Cry2Ab-resistant strain of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bollgard II</td>
<td>Mahon RJ, Olsen KM</td>
<td>2009</td>
<td>Journal of Economic Entomology</td>
<td>102</td>
<td>708-716</td>
</tr>
<tr>
<td>793</td>
<td>Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects</td>
<td>Mundiz-Garay C, Portugal L, Pardo-López L, Jiménez-Juarez N, Arenas I, Gómez I, Sánchez-López</td>
<td>2009</td>
<td>Biochimica et Biophysica Acta (BBA) Biomembranes</td>
<td>1788</td>
<td>2229-2237</td>
</tr>
<tr>
<td>794</td>
<td>Impacts of Bt crops on non-target invertebrates and insecticide use patterns</td>
<td>Naranjo SE</td>
<td>2009</td>
<td>CAB</td>
<td>4</td>
<td>42309</td>
</tr>
<tr>
<td>795</td>
<td>Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb Toxicles to Coleopteran Larvae by a Toxin-Binding Fragment of an Insect Cadherin</td>
<td>Park Y, Abdullah MAF, Taylor PM, Rahman K, Abdin MJ</td>
<td>2009</td>
<td>Applied and Environmental Microbiology</td>
<td>75</td>
<td>3086-3092</td>
</tr>
<tr>
<td>796</td>
<td>Bacillus thuringiensis Resistance Influences European Corn Borer (Lepidoptera: Crambidae) Larval Behavior After Exposure to Cry1Ab</td>
<td>Prasilita JR, Hellmich RL, Sadowod AF, Siegfried BD</td>
<td>2009</td>
<td>Journal of Economic Entomology</td>
<td>102</td>
<td>781-787</td>
</tr>
<tr>
<td>797</td>
<td>Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin</td>
<td>Raajapal K, Anora N, Sivakumar S, Rao Nagaran GV, Nimballar Sharad A, Bhatnarar Ra K</td>
<td>2009</td>
<td>Biochemical Journal</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>798</td>
<td>Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities</td>
<td>Rauschen S, Schultheis E, Page-Wieder S, Schuhpan I, Eber S</td>
<td>2009</td>
<td>Transgenic Research</td>
<td>18</td>
<td>203-214</td>
</tr>
<tr>
<td>799</td>
<td>Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment</td>
<td>Sarkar B, Patra AK, Purakayastha TJ, Meqharaj M</td>
<td>2009</td>
<td>Environmental Monitoring and Assessment</td>
<td>156</td>
<td>595-604</td>
</tr>
<tr>
<td>800</td>
<td>Effects of activated Bt transgene products (Cry1Ab, Cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity testing</td>
<td>Schmidt J, Klima Braun CU, Whitehouse LP, Hilbeck C</td>
<td>2009</td>
<td>Archives of environmental contamination and toxicology</td>
<td>56</td>
<td>221-228</td>
</tr>
<tr>
<td>802</td>
<td>Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?</td>
<td>Soberon M, Gill S, Bravo A</td>
<td>2009</td>
<td>Cellular and Molecular Life Sciences</td>
<td>66</td>
<td>1337-1349</td>
</tr>
<tr>
<td>Reference</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>835</td>
<td>Imura O, Shi K, Imura K, Takamizo T</td>
<td>2010</td>
<td>Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>836</td>
<td>Jensen PD, Dively GP, Swan CM, Lamp WO</td>
<td>2010</td>
<td>Exposure and nontarget effects of transgenic Bt corn debris in streams</td>
<td>Environmental Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>837</td>
<td>Kapur M, Bhaltia R, Pandey G, Pandey J, Paul D, Jain R</td>
<td>2010</td>
<td>A Case Study for Assessment of Microbial Community Dynamics in Genetically Modified Bt Cotton Crop Fields</td>
<td>Current Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>839</td>
<td>Li G, Feng H, Chen P, Wu S, Liu B, Qiu F</td>
<td>2010</td>
<td>Effects of transgenic Bt cotton on the population density, oviposition behavior, development, and reproduction of a nontarget pest, Adelphocoris auritulus (Hemiptera: Miridae)</td>
<td>Environmental Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>840</td>
<td>Li Y, Meissle M, Romjes J</td>
<td>2010</td>
<td>Use of maize pollen by adult Chrysopera camae (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties</td>
<td>Journal of Insect Physiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>841</td>
<td>Lin C-H, Pan T-M</td>
<td>2010</td>
<td>RT-nanotargeting gradient gel electrophoresis analysis to assess the effects of a genetically modified cucumber mosaic virus-resistant tomato plant on soil microbial communities</td>
<td>Applied and Environmental Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>844</td>
<td>Liu W</td>
<td>2010</td>
<td>Do genetically modified plants impact arbuscular mycorrhizal fungi?</td>
<td>Ecotoxicology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>Lottmann J, O’Callaghan M, Baird D, Walter C</td>
<td>2010</td>
<td>Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.)</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>848</td>
<td>Mann RS, Gill RS, Dhawan AK, Shera PG</td>
<td>2010</td>
<td>Relative abundance and damage by target and non-target insects on Bollgard and BollgardII cotton cultivars</td>
<td>Crop Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>849</td>
<td>Murphy AF, Grinzel MD, Kupke CH</td>
<td>2010</td>
<td>Evaluating western corn rootworm (Coleoptera: Chrysomelidae) emergence and root damage in a seed mix refuge</td>
<td>Journal of Economic Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>National Research C</td>
<td>2010</td>
<td>Impact of Genetically Engineered Crops on Farm Sustainability in the United States</td>
<td>Journal of Economic Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>851</td>
<td>Onstad DW, Meinke LJ</td>
<td>2010</td>
<td>Modeling Evolution of Diabrotica Virgifera Virgifera (Coleoptera: Chrysomelidae) to Transgenic Corn with Two Insecticidal Traits</td>
<td>Journal of Economic Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>852</td>
<td>O’Rourke ME, Sappington TW, Fleischer SJ</td>
<td>2010</td>
<td>Managing resistance to Bt crops in a genetically variable insect herbivore, Ostrinia nubilalis</td>
<td>Ecological Applications: A Publication of the Ecological Society of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>Perry JN, Devos Y, Arpaia S, Bartsch D, Gathmann A, Hails RS, Kiss J, Heuerun K, Manachini</td>
<td>2010</td>
<td>A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe</td>
<td>Proceedings of the Royal Society B: Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>854</td>
<td>Powles SB</td>
<td>2010</td>
<td>Gene amplification delivers glyphosate-resistant weed evolution</td>
<td>Proceedings of the National Academy of Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>855</td>
<td>Rauschen S, Schraaehsmidt F, Gathmann A</td>
<td>2010</td>
<td>Occurrence and field densities of Coleoptera in the maize herb layer: implications for Environmental Risk Assessment of genetically modified Bt-maize</td>
<td>Transgenic Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>856</td>
<td>Rauschen S, Schraaehsmidt F, Gathmann A</td>
<td>2010</td>
<td>Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape</td>
<td>Environmental Biosafety Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>Raven PH</td>
<td>2010</td>
<td>Does the use of transgenic plants diminish or promote biodiversity?</td>
<td>New Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>858</td>
<td>Raybould A, Viachos D</td>
<td>2010</td>
<td>Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MR162 maize</td>
<td>Transgenic Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>859</td>
<td>Saayd A, Weicham B, Struwing I, Smith M, Frenich W, Nielsen C, Badley M</td>
<td>2010</td>
<td>Isolation of transcripts from Diabrotica virgifera virgifera LeConte responsive to the Bacillus thuringiensis toxin Cry3Bb1</td>
<td>Insect Molecular Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>860</td>
<td>Tabashnik BE, Carriere Y</td>
<td>2010</td>
<td>Field-Exo Evolved Resistance to Bt Cotton: Bollworm in the U.S. and Pink Bollworm in India</td>
<td>Southwest Entomologist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>864</td>
<td>Zeiller AR, Andow DA, Zahren C, Stottszy G</td>
<td>2010</td>
<td>Earthworm populations in a northern U.S. Cornbelt soil are not affected by long-term cultivation of Bt maize expressing Cry1Ab and Cry3Bb1 proteins</td>
<td>Soil Biology and Biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>865</td>
<td>Zhao J, Jin Y, Yang Y, Wu Y</td>
<td>2010</td>
<td>Diverse cadherin mutations confering resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera</td>
<td>Insect Biochemistry and Molecular Biology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
866 Alvarez-Añategye F, Bigler F, Romeis J 2011 Laboratory toxicity studies demonstrate no adverse effects of Cry1A(b) and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design Transgenic Research 20 467-479

867 Alyokhin A 2011 Scant evidence supports EPA's pyramid Bt corn refuge size of 5% Nature Biotechnology 29 577-578

870 Burgess EP, Barracough DJ, Keen AM, Walter C, Malone AM 2011 No Impact of Transgenic split-leaf Pinus radiata (Pinales: Pinaceae) on Pseudococcia suavis (Lepidoptera: Geometridae) or its Endoparasitoid Meteorus pulchricornis Environmental Entomology 40 1331-1340

872 Burkness EC, O’Rourke PK, Hutchison WD 2011 Cross-Pollination of Nontransgenic Corn Ears with Transgenic Bt Corn: Efficacy Against Lepidopteran Pests and Implications for Resistance Management Journal of Economic Entomology 104 1476-1479

873 Carpenter JE 2011 Impact of GM crops on biodiversity GM crops 2 45108

875 Cheeke TE, Pace BA, Rosenstiel TN, Crubbaan M 2011 The expression of a novel protein in transgenic, transgenic maize (Zea mays) in experimental microcosms FEMS Microbiology Ecology 75 304-312

876 Cui J, Luo J, Werf VWD, Ma Y, Xia J 2011 Effect of Pyramiding Bt and UH1 Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) Under Laboratory and Field Conditions Journal of Economic Entomology 104 673-684

877 D’Angelo-Picard C, Chapelle E, Ratel P, Faure D, Dessaux Y 2011 Transgenic plants expressing the quorum quenching lactonase AtHtn do not significantly alter root-associated bacterial populations Research in microbiology 162 951-958

878 Dhunna S, Gujar GT 2011 Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India Pest Management Science 67 898-903

879 Fabrick JA, Mathew LG, Tabashnik BE, Xu J 2011 Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella Insect Molecular Biology 20 651-665

880 Frank DL, Bukovsky R, French BW, Hibbard BE 2011 Effect of MON864 transgenic maize at different stages of development on western corn rootworm (Coleoptera: Chrysomelidae) in a central Missouri field environment Journal of Economic Entomology 104 2054-2061

882 Gatehouse AMR, Ferry N, Edwards MG, Bell HA 2011 Insect-resistant biotech crops and their impacts on beneficial arthropods Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 366 1438-1452

885 Hendriksma HP, Härtel S, Stefan- Diewert I 2011 Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae PLoS ONE 6

886 Hibbard BE, Frank DL, Kuritz RB, Boudreau E, Elenisern MR, Oldhambo JF 2011 Mortality Impact of Bt Transgenic Maize Roots Expressing eCry1A(b), mCry3A, and mCry1Ac on Western Corn Rootworm Larvae in the Field Journal of Economic Entomology 104 1584-1591

888 Huang F, Ghirime MN, Leonard BR, Wang J, Davis C, Levy R, Cook DJ, Head GP, Yang Y, Temppe 2011 F2 screening for resistance to pyramided Bacillus thuringiensis maize in Louisiana and Mississippi populations of Diatraea saccharalis (Lepidoptera: Crambidiae) Pest Management Science 67 1269-1276

890 Kaur P, Dilawary VK 2011 Inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) from India Pest Management Science 67 1294-1302

891 Kruger M, Rensburg JRM, Berg JVD 2011 Resistance to Bt Maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa Environmental Entomology 40 477-483

894 Li Y, Romes J, Wang P, Peng Y, Shelton AM 2011 A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry3Bb1 PLoS ONE 6

895 Liu X, Chen M, Onstad D, Roush R, Shelton AM 2011 Effects of Bt broccoli and resistant genotype of Pluteula xyllostella (Lepidoptera: Plutellidae) on development and host acceptance of the parasitoid Diaerthosia picipes (Hymenoptera) Transgenic Research 20 887-897

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>Year</th>
<th>Title</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>959</td>
<td>Verbruggen E., Kuramae EE., Hillenkens R., de Hollander M., Kiers ET., Rilling M.</td>
<td>2012</td>
<td>Testing Potential Effects of Maize Expressing the Bacillus thuringiensis Cry1Ab Endotoxin (Bt Maize) on Mycorrhiza Fungal Communities via DNA- and RNA-Based Pyrosequencing</td>
<td>Applied and Environmental Microbiology</td>
</tr>
<tr>
<td>960</td>
<td>Pan P., Huang Y., Wu H., Huang M., Cong S., Tabashnik BE., Wu K.</td>
<td>2012</td>
<td>Increased Frequency of Pink Bollworm Resistance to Bt Toxin Cry1Ac in China</td>
<td>PLoS ONE</td>
</tr>
<tr>
<td>961</td>
<td>Romes J., McLean Ma., Shelton AM.</td>
<td>2013</td>
<td>When bad science makes good headlines: Bt maize and regulatory bans</td>
<td>Nature Biotechnology</td>
</tr>
<tr>
<td>963</td>
<td>Perry JN</td>
<td>2002</td>
<td>Sensitive dependencies and separation distances for genetically modified herbicide-tolerant crops</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
</tr>
<tr>
<td>966</td>
<td>Klein F., Lavigne C., Puessellisssar X., Gouyon P-H., Larrédo C.</td>
<td>2003</td>
<td>Corn pollen dispersal: quasi-mechanistic models and field experiments</td>
<td>Ecological Monographs</td>
</tr>
<tr>
<td>968</td>
<td>Chilcutt C.F., Tabashnik BE.</td>
<td>2004</td>
<td>Contamination of refuge by Bacillus thuringiensis toxin genes from transgenic maize</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
</tr>
<tr>
<td>970</td>
<td>Devos Y., Reheul D., De Schrijver A.</td>
<td>2005</td>
<td>The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>971</td>
<td>Flannery M., L, Meade C., Mulliens E.</td>
<td>2005</td>
<td>Employing a composite gene-flow index to numerically quantify a crop's potential for gene flow: an Irish perspective</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>972</td>
<td>Gruber S., Pekrun C., Claupein W.</td>
<td>2005</td>
<td>Life cycle and potential gene flow of volunteer oilseed rape in different tillage systems</td>
<td>Weed Research</td>
</tr>
<tr>
<td>973</td>
<td>Lutman P.J.W., Berry K., Payne R.W., Simpson E., Sweet JB., Champion G.T., May</td>
<td>2005</td>
<td>Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus)</td>
<td>Proceedings of the Royal Society B: Biological Sciences</td>
</tr>
<tr>
<td>974</td>
<td>Rong J., Song Z., Su J., Xie H., Lu B., R., Wang F.</td>
<td>2005</td>
<td>Low frequency of transgene flow from Bt/CpTI rice to its non-transgenic counterparts planted at close spacing</td>
<td>Crop Science</td>
</tr>
<tr>
<td>975</td>
<td>Al-Ahmad H., Dwyer J., Moloney M., Gressel J.</td>
<td>2006</td>
<td>Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene</td>
<td>Plant Biotechnology Journal</td>
</tr>
<tr>
<td>977</td>
<td>Devos Y., Reheul D., Thas O., De Clercq EM., Cordeens K.</td>
<td>2006</td>
<td>Spatial impact of isolation distances between parcels of GM and non-GM maize</td>
<td>Communications in Agricultural and Applied Biological Sciences</td>
</tr>
<tr>
<td>978</td>
<td>European c.</td>
<td>2006</td>
<td>New case studies on the coexistence of GM and non-GM crops in European agriculture</td>
<td></td>
</tr>
<tr>
<td>981</td>
<td>Moschini G.</td>
<td>2006</td>
<td>Pharmaceutical and Industrial Traits in Genetically Modified Crops: Coexistence with Conventional Agriculture</td>
<td>American Journal of Agricultural Economics</td>
</tr>
<tr>
<td>983</td>
<td>Abuz S., de Souza P.M., Vianna GR., Leonhardtz E., Moreira C.T., Faleiro FG., Junior J., Monteiro H.</td>
<td>2007</td>
<td>Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil</td>
<td>Genetics and Molecular Research</td>
</tr>
<tr>
<td>985</td>
<td>Hoyle M., Cresswell J.E.</td>
<td>2007</td>
<td>The effect of wind direction on cross-pollination in wind-pollinated GM crops</td>
<td>Ecological Applications: A Publication of the Ecological Society of America</td>
</tr>
<tr>
<td>987</td>
<td>Hüsken A., Dietz-Pfistetter A.</td>
<td>2007</td>
<td>Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.)</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>989</td>
<td>Kupinainen A., Schum F., Tackenberg O., Hara RB.</td>
<td>2007</td>
<td>Air-pollinated pollen flow from genetically modified to conventional crops</td>
<td>Ecological Applications: A Publication of the Ecological Society of America</td>
</tr>
<tr>
<td>ID</td>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1052</td>
<td>Devos Y,Hails R,Messéan A,Perry J,Squire G</td>
<td>2012</td>
<td>Feral genetically modified herbicide tolerant oilseed rape from seed import spils: are concerns scientifically justified?</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>1055</td>
<td>Munier DJ,Brittian KL,lanini WT</td>
<td>2012</td>
<td>Seed bank persistence of genetically modified canola in California</td>
<td>Environmental Science and Pollution Research</td>
</tr>
<tr>
<td>1056</td>
<td>Paladumín A,Mele E,Monsfort A,Serra J,Salvia J,Messeguer J</td>
<td>2012</td>
<td>Assessment of the influence of field size on maize gene flow using SSR analysis</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>1057</td>
<td>Raybould A,Higgins LS,Horak M,Jayton RJ,Storer NP,De La Fuente JM,Herman RA</td>
<td>2012</td>
<td>Assessing the ecological risks of the persistence and spread of feral populations of insect-resistant transgenic maize</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>1058</td>
<td>Burke JM,Gardner KA,Rieseberg LH</td>
<td>2002</td>
<td>The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United States</td>
<td>American Journal of Botany</td>
</tr>
<tr>
<td>1059</td>
<td>Gueritrane G,Sester M,Eber F,Chere AM,Darmency H</td>
<td>2002</td>
<td>Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum)</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>1060</td>
<td>Haltiell MD,Milwood RJ,Raymer PL,Stewart CN, Jr.</td>
<td>2002</td>
<td>Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>1062</td>
<td>Lavigne C,Klein EK,Couvet D</td>
<td>2002</td>
<td>Using seed purity data to estimate an average pollen mediated gene flow from crops to wild relatives</td>
<td>TAG, Theoretical and applied genetics, Theoretische und angewandte Genetik</td>
</tr>
<tr>
<td>1063</td>
<td>Li M,Kato M,Kakahara F</td>
<td>2002</td>
<td>Destiny of a transgene escape from Brassica napus into Brassica rapa</td>
<td>TAG, Theoretical and applied genetics, Theoretische und angewandte Genetik</td>
</tr>
<tr>
<td>1064</td>
<td>Metz M,Futterer J</td>
<td>2002</td>
<td>Biodiversity (Communications arising): Suspect evidence of transgenic contamination (see editorial footnote)</td>
<td>Nature</td>
</tr>
<tr>
<td>1065</td>
<td>Moyes CL,Lilley JM,Casais CA,Cole SG,Haeger PD,Dale PJ</td>
<td>2002</td>
<td>Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>1066</td>
<td>Snow AA</td>
<td>2002</td>
<td>Transgenic crops why gene flow matters</td>
<td>Nature Biotechnology</td>
</tr>
<tr>
<td>1067</td>
<td>Viard F,Bernard J,Desplaque B</td>
<td>2002</td>
<td>Crop-weed interactions in the Beta vulgaris complex at a local scale: allicic diversity and gene flow within sugar beet fields</td>
<td>TAG, Theoretical and applied genetics, Theoretische und angewandte Genetik</td>
</tr>
<tr>
<td>1068</td>
<td>Amaud JF,Viard F,Delescluse M,Cuguen J</td>
<td>2003</td>
<td>Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy</td>
<td>Proceedings of the Royal Society B: Biological Sciences</td>
</tr>
<tr>
<td>1069</td>
<td>Bartsch D,Cuguen J,Biancardi E,Sweet J</td>
<td>2003</td>
<td>Environmental implications of gene flow from sugar beet to wild beet--current status and future research needs</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>1070</td>
<td>Elistrand NC</td>
<td>2003</td>
<td>Current knowledge of gene flow in plants: implications for transgene flow</td>
<td>Philosophical Transactions of the Royal Society B: Biological Sciences</td>
</tr>
<tr>
<td>1071</td>
<td>Halfhill MD,Milwood RJ,Weissinger AK,Warwick SI,Stewart CN, Jr.</td>
<td>2003</td>
<td>Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations</td>
<td>TAG, Theoretical and applied genetics, Theoretische und angewandte Genetik</td>
</tr>
<tr>
<td>1072</td>
<td>Hauser TP,Damgaard C,Jørgensen RB</td>
<td>2003</td>
<td>Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae)</td>
<td>American Journal of Botany</td>
</tr>
<tr>
<td>1073</td>
<td>Haygood R,Evans AR,Andow DA</td>
<td>2003</td>
<td>Consequences of recurrent gene flow from crops to wild relatives</td>
<td>Proceedings of the Royal Society B: Biological Sciences</td>
</tr>
<tr>
<td>1074</td>
<td>Jenczewski E,Ronfort J,Chèvre A-M</td>
<td>2003</td>
<td>Crop-to-wild gene flow, introgression and possible fitness effects of transgenics</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>1075</td>
<td>Lefemideau DK,Robinson GS,Hagen JA</td>
<td>2003</td>
<td>Bt crops: predicting effects of escaped transgenics on the fitness of wild plants and their herbivores</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>1076</td>
<td>Stewart CN, Jr.,Halfhill MD,Warwick SI</td>
<td>2003</td>
<td>Transgene introgression from genetically modified crops to their wild relatives</td>
<td>Nature Reviews Genetics</td>
</tr>
<tr>
<td>1079</td>
<td>Chen Li Lee DS,Song ZP,Suh HS,Lu BR</td>
<td>2004</td>
<td>Gene Flow from Cultivated Rice (Oryza sativa) to its Weedy and Wild Relatives</td>
<td>Annals of Botany</td>
</tr>
<tr>
<td>1080</td>
<td>Guy M P</td>
<td>2004</td>
<td>Geneflow from GM plants -- towards a more quantitative risk assessment</td>
<td>Trends in Biotechnology</td>
</tr>
<tr>
<td>1081</td>
<td>Halfhill MD,Zhu B,Warwick SI,Raymer PL,Milwood RJ,Weissinger AK,Stewart CN, Jr.</td>
<td>2004</td>
<td>Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>1082</td>
<td>Vacher C,Weiss AE,Herrmann D,Kosseter T,Young D,Loebberg ME</td>
<td>2004</td>
<td>Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdsseed rape (Brassica rapa)</td>
<td>TAG, Theoretical and Applied Genetics</td>
</tr>
</tbody>
</table>
Investigation of rice transgene flow in compass sectors by using
Risks and consequences of gene flow from herbicide-resistant
Zelaya IA, Owen MDK, Vangessel
2004 Stable Bacillus thuringiensis (Bt) toxin content in interspecific
F1 and backcross populations of wild Brassica rapa after Bt
gene transfer
Molecular Ecology 13 237-241

Zelaya IA, Lawrence JR, Warwick
2004 Inheritance of GFP-Bt transgenes from Brassica napus in
backcrosses with three wild B. rapa accessions
Environmental Biosafety Research 3 45-54

Armstittell H, Mikkelson
2005 Transgene expression and fitness of hybrids between GM
oilseed rape and Brassica rapa
Environmental Biosafety Research 4 42075

Armstrong TT, Fitzjohn
2005 Transgene escape: what potential for crop-wild hybridization?
Molecular Ecology 14 2111-2132

Halflit MD, Sutherland JP, Moon
2005 Growth, productivity, and competitiveness of introgressed
weedy Brassica rapa hybrids selected for the presence of Bt
cry1Ac and glp transgenes
Molecular Ecology 14 3177-3189

Hudson LC, Halflit MD, Stewart CN
2005 Transgene dispersal through pollen
Methods Mol Biol 286 365-74

Kaiser J
2005 Calming Fears, No Foreign Genes Found in Mexico’s Maize
Science 309 61 290-300

Légere A
2005 Absence of detectable transgenes in local landraces of maize in
Proceedings of the National Academy of Sciences of the United
States of America 102 12338-12343

Ortiz-Garcia S, Euzura E, Schoel B, Acevedo F, Soberon J, Snow AA
2005 Abundance of detectable transgenes in local landraces of maize in
Oaxaca, Mexico (2003-2004)
Proceedings of the National Academy of Sciences of the United
States of America 102 2007 12338-12343

Raybould A, Cooper I
2005 Tiered tests to assess the environmental risk of fitness changes
in hybrids between transgenic crops and wild relatives: the
example of virus resistant Brassica napus
Environmental Biosafety Research 4 127-140

2005 Monitoring the escape of transgenic oilseed rape around
Japanese ports and roadsides
Environmental Biosafety Research 4 217-222

Ward M, Dick CW, Gibrel RL, Lowe AJ
2005 To self, or not to self... A review of outcrossing and pollen-
middiated gene flow in neotropical trees
Hereditity 95 174 246-254

Al-Ahmad H, Gressel J
2006 Mitigation using a tandem construct containing a selectively
unfit gene precludes establishment of Brassica napus transgenes in
hybrids and backcrosses with weedy Brassica
Plant Biotechnology Journal 4 23-33

Allainguillaume JA, Alexander M, Bullock JM, Saunders M, Allender CJ, King G, Ford
2006 Fitness of hybrids between rapeseed (Brassica napus) and wild
Brassica rapa in natural habitats
Molecular Ecology 15 1175-1184

Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A, Sai H
2006 Detection of feral transgenic oilseed rape with multiple-herbicide
resistance in Japan
Environmental Biosafety Research 5 77-87

Lee D, Natesan E
2006 Evaluating genetic containment strategies for transgenic plants
Trends in Biotechnology 24 109-114

Mynarova L, Conner AJ, Nap JP
2006 Directed microspore-specific recombination of transgenic alleles
to prevent pollen-mediated transmission of transgenes
Plant Biotechnology Journal, 4, 4 445-445, 452, 452

Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory - Smith C
2006 Establishment of transgenic herbicide - resistant creeping
bentgrass (Agrostis stolonifera L.) in nonagronomic habitats
Molecular Ecology 15 4243-4255

Schonenerberger N, Guadagnuolo R, Savova-Bianchi D, Kipfer P, Felber F
2006 Molecular Analysis, Cytogenetics and Fertility of Introggression
Lines From Transgenic Wheat to Aegilops cylindrica Host
Genetics 174 2061-2070

Sutherland JP, Justinova L, Poppy GM
2006 The responses of crop - wild Brassica hybrids to simulated
herbivory and interspecific competition: implications for
transgene introgression
Environmental Biosafety Research 5 15-25

2006 A large-scale field study of transgene flow from cultivated rice
(Oryza sativa) to common wild rice (O. rufipogon) and barnyard
grass (Echinochloa crusgalli)
Plant Biotechnology Journal 4 667-676

2007 Transgene escape in sugar beet production fields: data from six years
farm scale monitoring
Environmental Biosafety Research 6 197-206

Felber F, Kozlowski G, Arrigo N, Guadagnuolo R
2007 Genetic and Ecological Consequences of Transgene Flow to the
Wild Flora
Green Gene Technology 107 173-205

Pfender W, Graw R, Bradley W, Carnery M, Maxwell L
2007 Emission Rates, Survival, and Modeled Dispersal of Viable
Pollens of Creeping Bentgrass
Crop Science 47 2007

Van de Water PK, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ
2007 Long-distance GM pollen movement of creeping bentgrass
using modeled wind trajectory data
Ecological Applications: A Publication of the Ecological Society of America 17 1244-1256

2007 Investigation of rice transgene flow in compass sectors by using
male sterile line as a pollen detector
TAG Theoretical and Applied Genetics 115 549-560

Zelaya IA, Owen MDK, Vangessel MJ
2007 Transfer of glyphosate resistance: evidence of hybridization in
Conyza (Asteraceae)
American Journal of Botany 94 660-673

Bae TW, Vanjidor E, Song SY, Nishiguchi S, Yang SS, Song J, Chandrasekhar T, Kang TW, Kim
2008 Dispersal of viable row-crop seeds of commercial agriculture by
farmland birds: implication for genetically modified crops
Environmental Biosafety Research 7 241-252

Cummings JL, Handley LW, Macbryde B, Tupper SK, Werner SJ, Byram ZJ
2008 Can we stop transgenes from taking a walk on the wild side?
Molecular Ecology 17 1167-1169
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersal and persistence of genetically modified oilseed rape around Japanese harbors</td>
<td>Kawata M, Murakami K, Ishikawa T</td>
<td>2008</td>
<td>Environmental Science and Pollution Research</td>
</tr>
<tr>
<td>Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population</td>
<td>Warwick St-Lépère A, Simard M, James T</td>
<td>2008</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives</td>
<td>Devos Y, De Schrijver A, Reheul D</td>
<td>2009</td>
<td>Environmental Monitoring and Assessment</td>
</tr>
<tr>
<td>Fitness and maternal effects in hybrids formed between transgenic oilseed rape (Brassica napus L.) and wild brown mustard (B. juncea L.) in the field</td>
<td>Di K, Steward CN, Jr., Wei W, Shen B-C, Tang Z, X, Ma K-P</td>
<td>2009</td>
<td>Pest Management Science</td>
</tr>
<tr>
<td>A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds</td>
<td>Gressel J, Valverde BE</td>
<td>2009</td>
<td>Pest Management Science</td>
</tr>
<tr>
<td>Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences</td>
<td>Lu B-R, Yang C</td>
<td>2009</td>
<td>Biotechnology Advances</td>
</tr>
<tr>
<td>Monitoring the occurrence of genetically modified oilseed rape growing along a Japanese roadside: 3-year observations</td>
<td>Nishizawa T, Nakajima N, Aono M, Tamaoki M, Kubo A, Saji H</td>
<td>2009</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>Insufficient evidence for the discovery of transgenes in Mexican landraces</td>
<td>Schol B, Fagan J</td>
<td>2009</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>Unwanted Transgenes Re-Discovered in Oaxacan Maize</td>
<td>Snow A</td>
<td>2009</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>Potential gene flow from transgenic rice (Oryza sativa L.) to different weedy rice (Oryza sativa f. spontanea) accessions based on reproductive compatibility</td>
<td>Song X, Liu L, Wang Z, Qiang S</td>
<td>2009</td>
<td>Pest Management Science</td>
</tr>
<tr>
<td>Rapid spread of invasive genes into a threatened native species</td>
<td>Fitzpatrick BM, Johnson JR, Kump DK, Smith JJ, Voss SR, Shafer HB</td>
<td>2010</td>
<td>Proceedings of the National Academy of Sciences</td>
</tr>
<tr>
<td>Existence of vigorous lineages of crop-wild hybrids in Lettuce under field conditions</td>
<td>Hoofman DAP, Hartman Y, Oostemeijer JGB, Den Nijs HCM</td>
<td>2010</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>Potential Hybridization of Genetically Engineered Triticale with Wild and Weedy Relatives in Canada</td>
<td>Kavanagh VB, Hall LM, Hall JC</td>
<td>2010</td>
<td>Crop Science</td>
</tr>
<tr>
<td>Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations</td>
<td>Liu YB, Wei W, Ma KP, Darmency H</td>
<td>2010</td>
<td>Plant science: an international journal of experimental plant biology</td>
</tr>
<tr>
<td>Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids</td>
<td>Londo JP, Baulista NS, Sagers CL, Lee EH, Watrus LS</td>
<td>2010</td>
<td>Annals of Botany</td>
</tr>
<tr>
<td>Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan</td>
<td>Mizuguti A, Ohigashi K, Yoshimura Y, Kaga A, Kuroda Y, Matuso K</td>
<td>2010</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>Keeping the genie in the bottle: transgene biocontainment by excision in pollen</td>
<td>Moon HS, Lu Y, Steward Jr CN</td>
<td>2010</td>
<td>Trends in Biotechnology</td>
</tr>
<tr>
<td>Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan</td>
<td>Nichizawa T, Tamaoki M, Aono M, Kubo A, Saji H, Nakajima N</td>
<td>2010</td>
<td>GM crops</td>
</tr>
<tr>
<td>Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations</td>
<td>Rong J, Jansen S, Umehara M, One M, Vrëtling K</td>
<td>2010</td>
<td>Annals of Botany</td>
</tr>
<tr>
<td>Apomixis and ploidy barrier suppress pollen-mediated gene flow in field grown transgenic turf and forage grass (Passalum notatum Flaggii)</td>
<td>Sandhu S, Blount A, Quisenberry K, Altpeter F</td>
<td>2010</td>
<td>TAG Theoretical and Applied Genetics</td>
</tr>
<tr>
<td>Ref</td>
<td>Title</td>
<td>Year</td>
<td>Abstract</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>1146</td>
<td>Willenborg C,Brûlé-Babel A,Van Acker R</td>
<td>2010</td>
<td>Identification of a hybridization window that facilitates sizeable reductions of pollen-mediated gene flow in spring wheat</td>
</tr>
<tr>
<td>1147</td>
<td>Willenborg CJ,Brûlé-Babel AL,Van Acker RC</td>
<td>2010</td>
<td>Identification of a hybridization window that facilitates sizeable reductions of pollen-mediated gene flow in spring wheat</td>
</tr>
<tr>
<td>1152</td>
<td>Kwei C,Moon HS,Warwick SI,Stewart Jr CN</td>
<td>2011</td>
<td>Transgene introgression in crop relatives: molecular evidence and mitigation strategies</td>
</tr>
<tr>
<td>1153</td>
<td>Londo JP,Bollman MA,Sagers CL,Lee EH,Wahlin LS</td>
<td>2011</td>
<td>Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa</td>
</tr>
<tr>
<td>1154</td>
<td>Londo JP,Bollman MA,Sagers CL,Lee EH,Wahlin LS</td>
<td>2011</td>
<td>Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L</td>
</tr>
<tr>
<td>1156</td>
<td>Mayehofler M,Mayerhofer R,Topinka D,Christianson J,Good AG</td>
<td>2011</td>
<td>Introgression potential between safflower (Carthamus tinctorius) and wild relatives of the genus Carthamus</td>
</tr>
<tr>
<td>1157</td>
<td>Moon HS,Eda S,Saxton AM,Öw DW,Stewart CN,Stewart Jr CN</td>
<td>2011</td>
<td>An efficient and rapid transgenic pollen screening and detection method using flow cytometry</td>
</tr>
<tr>
<td>1158</td>
<td>Rayboud A</td>
<td>2011</td>
<td>The bucket and the searchlight: formulating and testing risk hypotheses about the weediness and invasiveness potential of transgenic crops</td>
</tr>
<tr>
<td>1159</td>
<td>Song X,Wang Z,Qiang S</td>
<td>2011</td>
<td>Agronomic performance of F1, F2 and F3 hybrids between weedy rice and transgenic glufosinate-resistant rice</td>
</tr>
<tr>
<td>1161</td>
<td>Wegier A,Feltyro - nelson A,A,Alarcon J,Gálvez - mariscal A,Avila - carneja - buylla ER,Piñero D</td>
<td>2011</td>
<td>Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin</td>
</tr>
<tr>
<td>1162</td>
<td>Zuo J,Zhang L,Song X,Dai W,Qiang S</td>
<td>2011</td>
<td>Invasive species causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes</td>
</tr>
<tr>
<td>1164</td>
<td>Kitamoto N,Kaga A,Kuroda Y,Ohsawa R</td>
<td>2012</td>
<td>A model to predict the frequency of integration of fitness-related QTLs from cultivated to wild soybean</td>
</tr>
<tr>
<td>1165</td>
<td>Kwei C,Stewart CN</td>
<td>2012</td>
<td>Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock</td>
</tr>
<tr>
<td>1167</td>
<td>Snow AA</td>
<td>2012</td>
<td>Illegal gene flow from transgenic creeping bentgrass: the saga continues</td>
</tr>
<tr>
<td>1169</td>
<td>Zapola ML,Mallory-Smith CA</td>
<td>2012</td>
<td>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</td>
</tr>
<tr>
<td>1170</td>
<td>Danniell H</td>
<td>2002</td>
<td>Molecular strategies for gene containment in transgenic crops</td>
</tr>
<tr>
<td>1171</td>
<td>de Vries J,Wackernagel W</td>
<td>2002</td>
<td>Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination</td>
</tr>
<tr>
<td>1173</td>
<td>Gogarten JP,DeLottle WF,Lawrence JG</td>
<td>2002</td>
<td>Prokaryotic evolution in light of gene transfer</td>
</tr>
<tr>
<td>1174</td>
<td>Gyaniti S,Pfeifer U,Steierschneider M,Sessitsch A</td>
<td>2002</td>
<td>Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere</td>
</tr>
<tr>
<td>1175</td>
<td>Kay E,Vogel TM,Bertolda F,Nalin R,Simonet P</td>
<td>2002</td>
<td>In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria</td>
</tr>
<tr>
<td>ID</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>1176</td>
<td>Normark BH,Normark S</td>
<td>2002</td>
<td>Evolution and spread of antibiotic resistance in soil</td>
</tr>
<tr>
<td>1177</td>
<td>Saxena D,Flores S,Stotzky G</td>
<td>2002</td>
<td>Bit toxin in released in root exudates from 12 transgenic corn hybrids representing three transformation events</td>
</tr>
<tr>
<td>1180</td>
<td>de Vries J,Heine M,Harms W</td>
<td>2003</td>
<td>Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp</td>
</tr>
<tr>
<td>1181</td>
<td>Lilley AK,Bailey M,Barr M,Knishaw K,Timms Wilson TM,Day MJ,Norris SJ,Jones TH,Fudimay</td>
<td>2003</td>
<td>Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri</td>
</tr>
<tr>
<td>1182</td>
<td>Meier P,Wackernagel W</td>
<td>2003</td>
<td>An assessment of factors affecting the likelihood of horizontal transfer of recombinant plant DNA to bacterial recipients in the soil and phytosphere</td>
</tr>
<tr>
<td>1183</td>
<td>Nielsen K.M.</td>
<td>2003</td>
<td>Homology-dependent DNA transfer from plants to a soil bacteria under laboratory conditions: implications in evolution and horizontal gene transfer</td>
</tr>
<tr>
<td>1185</td>
<td>Badossa E,Moreno C,Monterosino E</td>
<td>2004</td>
<td>Problems in monitoring horizontal gene transfer in field trials of transgenic plants</td>
</tr>
<tr>
<td>1186</td>
<td>Heinemann JA,Traaik T</td>
<td>2004</td>
<td>Gene transfer to plants by diverse species of bacteria</td>
</tr>
<tr>
<td>1187</td>
<td>Nielsen KM,Townsend JP</td>
<td>2004</td>
<td>Monitoring and modeling horizontal gene transfer</td>
</tr>
<tr>
<td>1189</td>
<td>Guan J,Spencer Jl,Ma BL</td>
<td>2005</td>
<td>The fate of the recombinant DNA in corn during composting</td>
</tr>
<tr>
<td>1193</td>
<td>Sørensen JS,Bailey M,Hansen LK,Knorr N,Wuertz S</td>
<td>2005</td>
<td>Studying plasmid horizontal transfer in situ: a critical review</td>
</tr>
<tr>
<td>1194</td>
<td>Thomas CM,Nielsen KM</td>
<td>2005</td>
<td>Mechanisms of, and barriers to, horizontal gene transfer between bacteria</td>
</tr>
<tr>
<td>1195</td>
<td>D’Costa VM,McGrann KM,Hughes DW,White GD</td>
<td>2006</td>
<td>Sampling the Antibiotic Resistome</td>
</tr>
<tr>
<td>1202</td>
<td>Simpson DJ,Dawson LF,Fry JC,Rogers HJ,Day MJ</td>
<td>2007</td>
<td>Influence of flanking homology and insert size on the transformation frequency of Acinetobacter bayyi BD413</td>
</tr>
<tr>
<td>1203</td>
<td>Simpson DJ,Fry JC,Rogers HJ,Day MJ</td>
<td>2007</td>
<td>Transformation of Acinetobacter bayyi in non-sterile soil using recombinant plant nuclear DNA</td>
</tr>
<tr>
<td>Bonadei M, Balestazzi A, Frigerio B, Carbonera D</td>
<td>2009</td>
<td>Soil persistence of DNA from transgenic poplar</td>
<td>Environmental Biosafety Research</td>
</tr>
<tr>
<td>Levy - Broth DJ, Golden HH, Campbell RG, Powell JR, Kirnemos JN, Pauls</td>
<td>2009</td>
<td>Roundup Ready® soybean gene concentrations in field soil aggregate size classes</td>
<td>FEMS Microbiology Letters</td>
</tr>
<tr>
<td>Bravo AG, Wildi W, Poté J</td>
<td>2010</td>
<td>Kinetics of plant material mass loss and DNA release in freshwater column</td>
<td>Ecotoxicology and Environmental Safety</td>
</tr>
<tr>
<td>Brugalla M, Wackernagel W</td>
<td>2010</td>
<td>Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues</td>
<td>Applied Microbiology and Biotechnology</td>
</tr>
<tr>
<td>Zhu B, Ma BL, Blackshaw RE</td>
<td>2010</td>
<td>Development of real time PCR assays for detection and quantification of transgene DNA of a Bacillus thuringiensis (Bt) corn hybrid in soil samples</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>Ma BL, Blackshaw RE, Roy J, He T</td>
<td>2011</td>
<td>Investigation on gene transfer from genetically modified corn (Zea mays L.) plants to soil bacteria</td>
<td>Journal of Environmental Science and Health, Part B</td>
</tr>
<tr>
<td>Talianova M, Janousek B</td>
<td>2011</td>
<td>What can we learn from tobacco and other Solanaceae about horizontal DNA transfer?</td>
<td>American Journal of Botany</td>
</tr>
<tr>
<td>Zhang X, Nemes J, Simoni P, Frostegård Å</td>
<td>2012</td>
<td>Fate of invading bacteria in soil and survival of transformants after simulated uptake of transgenics, as evaluated by a model system based on lindane degradation</td>
<td>Research in microbiology</td>
</tr>
<tr>
<td>Cockburn A</td>
<td>2002</td>
<td>Assuring the safety of genetically modified (GM) foods: the importance of an holistic, integrative approach</td>
<td>Journal of Biotechnology</td>
</tr>
<tr>
<td>Cellini F, Chessen A, Cologhoun U, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kennerkamp</td>
<td>2004</td>
<td>Untended effects and their detection in genetically modified crops</td>
<td>Food and Chemical Toxicology</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>2008</td>
<td>Cheng KC, Beaulieu J, Quira E, Belzile F, Fortin MG, Strömvik MV</td>
<td>Effect of Transgenics on Global Gene Expression in Soybean Is within the Natural Range of Variation of Conventional Cultivars</td>
<td>J. Agric. Food Chem.</td>
</tr>
<tr>
<td>2008</td>
<td>Hoekenga OA</td>
<td>Using Metabolomics To Estimate Unintended Effects in Transgenic Crop Plants: Problems, Promises, and Opportunities</td>
<td>Journal of Biomolecular Techniques</td>
</tr>
<tr>
<td>2008</td>
<td>Zolla L, Rinalducci S, Antonoli P, Righetti PG</td>
<td>Proteomics as a Complementary Tool for Identifying Unintended Side Effects Occurring in Transgenic Maize Seeds As a Result of Genetic Modifications</td>
<td>J. Proteome Res.</td>
</tr>
<tr>
<td>2009</td>
<td>Abdeen A, Miki B</td>
<td>The pleiotropic effects of the bar gene and glufosinate on the Arabidopsis transcriptome</td>
<td>Plant Biotechnol J</td>
</tr>
<tr>
<td>2009</td>
<td>Beauty PH, Shrawat AK, Carolle RT, Zhu T, Good AG</td>
<td>Transcriptome analysis of nitrogen - efficient rice over - expressing alanine aminotransferase</td>
<td>Plant Biotechnology Journal</td>
</tr>
<tr>
<td>2009</td>
<td>Chen H, Bodulovic G Hall PJ, Moore A, Higgins T J, Depridovic MA, Rollle BG</td>
<td>Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean α - amylase inhibitor gene</td>
<td>PROTEOMICS</td>
</tr>
<tr>
<td>2009</td>
<td>Coll A, Nadal A, Collado R, Capellades G, Messegue J, Mele E, Puigdoménech P, PLA M</td>
<td>Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>2009</td>
<td>Duarte IF, Lamego I, Rocha C, Gil AM</td>
<td>NMR metabonomics for mammalian cell metabolism studies</td>
<td>Bioanalysis</td>
</tr>
<tr>
<td>2009</td>
<td>Islam N, Campbell PM, Higgins TJ, Hirano H, Aehnur JF</td>
<td>Transgenic peas expressing an α - amylase inhibitor gene from beans show altered expression and modification of endogenous proteins</td>
<td>ELECTROPHORESIS</td>
</tr>
<tr>
<td>2009</td>
<td>Las Y, J, Jiang D, Yan L</td>
<td>Application of metabolic analytical techniques in the modernization and toxicology research of traditional Chinese medicine</td>
<td>British Journal of Pharmacology</td>
</tr>
<tr>
<td>2009</td>
<td>Miki B, Abdeen A, Manabe Y, MacDonald P</td>
<td>Selectable marker genes and unintended changes to the plant transcriptome</td>
<td>Plant Biotechnol J</td>
</tr>
<tr>
<td>2009</td>
<td>Paz JL, Vicent C, Puigdomenech P, PLA M</td>
<td>Characterization of polyadenylated cryIA(b) transcripts in maize MON810 commercial varieties</td>
<td>Analytical and Bioanalytical Chemistry</td>
</tr>
<tr>
<td>2009</td>
<td>Piccioni F, Cappiati D, Zolla L, Mannina L</td>
<td>NMR Metabolic Profiling of Transgenic Maize with the Cry1Ab(b) Gene</td>
<td>J. Agric. Food Chem.</td>
</tr>
<tr>
<td>2009</td>
<td>Pischetsrieder M, Baueuerlein R</td>
<td>Proteome research in food science</td>
<td>Chem. Soc. Rev.</td>
</tr>
<tr>
<td>2010</td>
<td>Abdeen A, Schnell J, Miki B</td>
<td>Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABP3</td>
<td>BMC Genomics</td>
</tr>
<tr>
<td>2010</td>
<td>Anttonen MJ, Lehteranta S, Aurola S, Röösli RM, Engel K, H. Kärenlampi SO</td>
<td>Genetic and Environmental Influence on Maize Kernel Proteome</td>
<td>J. Proteome Res.</td>
</tr>
<tr>
<td>2010</td>
<td>Asanuma Y, Jinkawa T, Tanaka H, Gondo T, Zaita N, Akashi R</td>
<td>Assays of the production of harmful substances by genetically modified oilseed rape (Brassica napus L.) plants in accordance with regulations for evaluating the impact on biodiversity in the Natural Range of Variation of Conventional Cultivars</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>2010</td>
<td>Batista R, Oliveira M</td>
<td>Plant natural variability may affect safety assessment data</td>
<td>Regulatory Toxicology and Pharmacology</td>
</tr>
<tr>
<td>1301</td>
<td>Chassy BM</td>
<td>2010</td>
<td>Can –omics inform a food safety assessment?</td>
</tr>
<tr>
<td>1301</td>
<td>Coll A,Nadal A,Gollado R,Capellades G,Kubista M,Messequer J,Pia M</td>
<td>2010</td>
<td>Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices</td>
</tr>
<tr>
<td>1303</td>
<td>Dijk J,Puyraveil C,Barratos E,Kok EJ</td>
<td>2010</td>
<td>Gene expression profiling for food safety assessment: Examples in potato and maize</td>
</tr>
<tr>
<td>1308</td>
<td>Patterson AD,Gonzalez FJ,Idle JR</td>
<td>2010</td>
<td>XENOBIOTIC METABOLISM – A VIEW THROUGH THE METABOLOMETER</td>
</tr>
<tr>
<td>1309</td>
<td>Paz J,Pia M,Papazova N,Puigdomenech P,Vicient C</td>
<td>2010</td>
<td>Stability of the MON 810 transgene in maize</td>
</tr>
<tr>
<td>1310</td>
<td>Paz J,Pia M,Papazova N,Puigdomenech P,Vicient CM</td>
<td>2010</td>
<td>Stability of the MON 810 transgene in maize</td>
</tr>
<tr>
<td>1313</td>
<td>Tahar SB,Salva I,Brants ID</td>
<td>2010</td>
<td>Genetic stability in two commercialized transgenic lines (MON810)</td>
</tr>
<tr>
<td>1316</td>
<td>D'Alessandro A,Zolla L</td>
<td>2011</td>
<td>We are what we eat: food safety and proteomics</td>
</tr>
<tr>
<td>1317</td>
<td>Garcia‐Cañas V,Simo C,León C,Ilarié E,Guiñez A</td>
<td>2011</td>
<td>MS-based analytical methodologies to characterize genetically modified crops</td>
</tr>
<tr>
<td>1324</td>
<td>Mazet-Marino M,Holzgrabe U</td>
<td>2011</td>
<td>NMR techniques in biomedical and pharmaceutical analysis</td>
</tr>
<tr>
<td>1325</td>
<td>Montero M,Coll A,Nadal A,Messequer J,Pia M</td>
<td>2011</td>
<td>Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene</td>
</tr>
<tr>
<td>1328</td>
<td>Robinson A,B,Robinson NE</td>
<td>2011</td>
<td>Origins of Metabolic Profiling</td>
</tr>
<tr>
<td>1330</td>
<td>Chang Y,Zhao C,Zhu Z,Wu J,Zhao Y,Lu X,Xu G</td>
<td>2012</td>
<td>Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sak genes</td>
</tr>
<tr>
<td>Article ID</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1331</td>
<td>Frank T, Röhlig RM, Davies HV, Barros E, Engel K-H</td>
<td>2012</td>
<td>Metabolite profiling of maize kernels—genetic modification versus environmental influence</td>
</tr>
<tr>
<td>1334</td>
<td>Pischke A, Choi YH, Breiksher PM, Klimkammer PGL, Brunsma M</td>
<td>2012</td>
<td>Metabolic plasticity in GM and non-GM potato leaves in response to aphid herbivory and virus infection</td>
</tr>
<tr>
<td>1336</td>
<td>Esposito F, Fogliano V, Cardi T, Caputo D, Filippone E</td>
<td>2002</td>
<td>Glycokalkaid Content and Chemical Composition of Potatoes Improved with Nonconventional Breeding Approaches</td>
</tr>
<tr>
<td>1337</td>
<td>Kuiper HA, Klerter GA, Noteborn HP, JM, Kok EJ</td>
<td>2002</td>
<td>Substantial equivalence—an appropriate paradigm for the safety assessment of genetically modified foods?</td>
</tr>
<tr>
<td>1338</td>
<td>Ridley WP, Siddhu RS, Pyla PD, Nemeth MA, Breeze ML, Astwood JD</td>
<td>2002</td>
<td>Comparison of the Nutritional Profile of Glyphosate-Tolerant Corn Event NK603 with That of Conventional Corn (Zeae mays L.)</td>
</tr>
<tr>
<td>1339</td>
<td>Kok EJ, Kuiper HA</td>
<td>2003</td>
<td>Comparative safety assessment for biotech crops</td>
</tr>
<tr>
<td>1341</td>
<td>Hamilton NK, Pyla PD, Breeze M, Olson T, Li M, Robinson E, Gallagher SP, Sorbet R, Chen Y</td>
<td>2004</td>
<td>Bollgard II Cotton: Compositional Analysis and Feeding Studies of Cottonseed from Insect-Protected Cotton (Gossypium hirsutum L.) Producing the Cry1Ac and Cry2Ab2 Proteins</td>
</tr>
<tr>
<td>1343</td>
<td>Oberdoerfer RB, Shillito RD, de Glycoalkaloid Content and Chemical Composition of Potatoes Substantial equivalence—an appropriate paradigm for the safety assessment of genetically modified foods?</td>
<td>Toxicology</td>
<td>181-182</td>
</tr>
<tr>
<td>1344</td>
<td>Kelly L</td>
<td>2005</td>
<td>The safety assessment of foods from transgenic and cloned animals using the comparative approach</td>
</tr>
<tr>
<td>1346</td>
<td>Oberdoerfer RB, Shillito RD, de Beukeleer MM, Mitten DH</td>
<td>2005</td>
<td>Rice (Oryza sativa L.) Carrying the bar Gene Is Compositionaly Equivalent to the Nontransgenic Counterpart</td>
</tr>
<tr>
<td>1348</td>
<td>Colquhoun U Li I, Gall G, Elliott KA, Mellon FA, Michael AJ</td>
<td>2006</td>
<td>Shall I compare thee to a GM potato?</td>
</tr>
<tr>
<td>1349</td>
<td>Hathorn LA, Oberdoerfer R</td>
<td>2006</td>
<td>Statistical analysis used in the nutritional assessment of novel food using the proof of safety</td>
</tr>
<tr>
<td>1355</td>
<td>McCann MC, Trujillo WA, Riordan SG, Sorbet R, Bogdanova NN, Siddhu RS</td>
<td>2007</td>
<td>Comparison of the Forage and Grain Composition from Insect-Protected and Glyphosate-Tolerant MON 88017 Corn to Conventional Corn (Zeae mays L.)</td>
</tr>
<tr>
<td>1358</td>
<td>Kier LD, Litchfield JS</td>
<td>2008</td>
<td>Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways</td>
</tr>
<tr>
<td>1360</td>
<td>Malowicki SM, Martin R, Qian MC</td>
<td>2008</td>
<td>Comparison of Sugar, Acids, and Volatile Composition in Raspberry Bushy Dwarf Virus-Resistant Transgenic Raspberries and the Wild Type 'Meeker' (Rubus idaeus L.)</td>
</tr>
<tr>
<td>Reference Number</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1362</td>
<td>Harrigan GG, Ridley WP, Miller KD, Sorrell R, Riordan SG, Nemeth MA, Reeves W, Poster TA</td>
<td>2009</td>
<td>The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn</td>
</tr>
<tr>
<td>1363</td>
<td>Herman RA, Chassy BM, Parrott W</td>
<td>2009</td>
<td>Compositional assessment of transgenic crops: an idea whose time has passed</td>
</tr>
<tr>
<td>1364</td>
<td>Berman KH, Harrigan GG, Riordan SG, Nemeth MA, Hanson C, Smith M, Sorrell R, Zhu E, Ridley WP</td>
<td>2010</td>
<td>Compositions of Forage and Seed from Second-Generation Glyphosate-Tolerant Soybean MON 89788 and Insect-Protected Soybean MON 87701 from Brazil Are Equivalent to Those of Conventional Soybean</td>
</tr>
<tr>
<td>1365</td>
<td>Harrigan GG, Glenn KC, Ridley WP</td>
<td>2010</td>
<td>Assessing the natural variability in crop composition</td>
</tr>
<tr>
<td>1368</td>
<td>Khalf M, Goulet C, Vorster J, Brunelle F, Anguenot R, Fliss I, Michael D</td>
<td>2010</td>
<td>Tubers from potato lines expressing a tomato Kunitz protease inhibitor are substantially equivalent to parental and transgenic controls</td>
</tr>
<tr>
<td>1370</td>
<td>Zabolio LHS, Oliveira RS, Visentinaker JV, Kremer RJ, Bellouci N, Yamada T</td>
<td>2010</td>
<td>Glyphosate Affects Seed Composition in Glyphosate-Resistant Soybean</td>
</tr>
<tr>
<td>1374</td>
<td>Zhou J, Berman KH, Breeze ML, Nemeth MA, Oliveira WS, Braga DPV, Berger GU, Harrigan GG</td>
<td>2011</td>
<td>Compositional variability in conventional and glyphosate-tolerant soybean (Glycine max L.) varieties grown in different regions in Brazil</td>
</tr>
<tr>
<td>1375</td>
<td>Zhou J, Harrigan GG, Berman KH, Webb EG, Klusmeyer TH, Nemeth MA</td>
<td>2011</td>
<td>Stability in the Composition of Phenylalanine (Phe (C6H5CH2NH2)) Content in Soybean Soybean (Glycine max) from Different Regions of the World</td>
</tr>
<tr>
<td>1376</td>
<td>Beckles DM, Tananuwong S, Scheemaker CF</td>
<td>2012</td>
<td>Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat</td>
</tr>
<tr>
<td>1377</td>
<td>Harrigan GG, Harrigan JM</td>
<td>2012</td>
<td>Assessing compositional variability through graphical analysis and Bayesian statistical approaches: case studies on transgenic crops</td>
</tr>
<tr>
<td>1378</td>
<td>Qin F, Kang L, Guo L, Lin J, Song J, Zhao Y</td>
<td>2012</td>
<td>Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control</td>
</tr>
<tr>
<td>1380</td>
<td>Andrew C</td>
<td>2002</td>
<td>Assuring the safety of genetically modified (GM) foods: the importance of an holistic, integrative approach</td>
</tr>
<tr>
<td>1381</td>
<td>Bucchin L, Goldman LR</td>
<td>2002</td>
<td>Starlink corn: a risk analysis</td>
</tr>
<tr>
<td>1382</td>
<td>Chambers PA, Duggan PS, Heritage J, Forbes JM</td>
<td>2002</td>
<td>The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens</td>
</tr>
<tr>
<td>1383</td>
<td>Chassy BM</td>
<td>2002</td>
<td>Food Safety Evaluation of Crops Produced through Biotechnology</td>
</tr>
<tr>
<td>1384</td>
<td>Cromwell GL, Lindemann MD, Randolph JH, Parker GR, Coffey RD, Laurent</td>
<td>2002</td>
<td>Soybean meal from roundup ready or conventional soybeans in diets for growing-finishing swine</td>
</tr>
<tr>
<td>1385</td>
<td>Folmer JD, Grant RJ, Milton CT, Beck J</td>
<td>2002</td>
<td>Utilization of Bt corn residues by grazing beef steers and Bt corn silage and grain by growing beef cattle and lactating dairy cows</td>
</tr>
<tr>
<td>1386</td>
<td>Harlander SK</td>
<td>2002</td>
<td>Safety Assessments and Public Concern for Genetically Modified Food Products: The American View</td>
</tr>
<tr>
<td>1387</td>
<td>Helfe SL, Taylor SL</td>
<td>2002</td>
<td>How much food is too much? Threshold doses for allergic foods</td>
</tr>
<tr>
<td>1388</td>
<td>Hino A</td>
<td>2002</td>
<td>Safety Assessment and Public Concerns for Genetically Modified Food Products: The Japanese Experience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1455</td>
<td>The power of tests for bioequivalence in feed experiments with poultry</td>
<td>2004</td>
<td>Journal of Animal Science</td>
<td>82</td>
<td>E-Suppl 110-118</td>
</tr>
<tr>
<td>1456</td>
<td>Relative Stability of Transgene DNA Fragments from GM Rapeseed in Mixed Ruminal Cultures</td>
<td>2004</td>
<td>British Journal of Nutrition</td>
<td></td>
<td>673-681</td>
</tr>
<tr>
<td>1457</td>
<td>Starlink genetically modified corn and allergenicity in an individual</td>
<td>2004</td>
<td>Journal of Allergy and Clinical Immunology</td>
<td>113</td>
<td>10003-1004; author</td>
</tr>
<tr>
<td>1458</td>
<td>A comparative study of the allergenic potency of wild - type and glyphansate - tolerant gene - modified soybean cultivars</td>
<td>2004</td>
<td>APMIS</td>
<td>112</td>
<td>21-28</td>
</tr>
<tr>
<td>1459</td>
<td>Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of starter pigs and broiler chickens</td>
<td>2004</td>
<td>Journal of Animal Science</td>
<td>82</td>
<td>2131-2139</td>
</tr>
<tr>
<td>1460</td>
<td>The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants</td>
<td>2004</td>
<td>Food Chemical Toxicol</td>
<td>42</td>
<td>1127-56</td>
</tr>
<tr>
<td>1461</td>
<td>Ultrastructural analysis of testes from mice fed on genetically modified soybean</td>
<td>2004</td>
<td>European journal of histochemistry; SJH</td>
<td>48</td>
<td>448-454</td>
</tr>
<tr>
<td>1462</td>
<td>Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation</td>
<td>2004</td>
<td>Food and Chemical Toxicology</td>
<td>42</td>
<td>493-502</td>
</tr>
<tr>
<td>1463</td>
<td>Nutritional assessment and fate of DNA of soybean meal from roundup ready or conventional soybeans using rats</td>
<td>2004</td>
<td>Archives of Animal Nutrition</td>
<td>58</td>
<td>295-310</td>
</tr>
<tr>
<td>1464</td>
<td>Bit176 corn in poultry nutrition: physiological characteristics and fate of recombinant plant DNA in chickens</td>
<td>2005</td>
<td>Poultry Science</td>
<td>84</td>
<td>385-394</td>
</tr>
<tr>
<td>1465</td>
<td>Lack of detectable allergenicity of transgenic maize and soya samples</td>
<td>2005</td>
<td>Journal of Allergy and Clinical Immunology</td>
<td>116</td>
<td>403-410</td>
</tr>
<tr>
<td>1466</td>
<td>Safety Risks for Animals Fed Genetic Modified (GM) Plants</td>
<td>2005</td>
<td>Veterinary Research Communications</td>
<td>29</td>
<td>13-18</td>
</tr>
<tr>
<td>1467</td>
<td>Industrial Dimensions of Food Allergy</td>
<td>2005</td>
<td>Proceedings of the Nutrition Society</td>
<td>64</td>
<td>470-474</td>
</tr>
<tr>
<td>1468</td>
<td>Glutinosinate herbicide-tolerant (LibertyLink) rice vs. conventional rice in diets for growing-finishig swine</td>
<td>2005</td>
<td>Journal of Animal Science</td>
<td>83</td>
<td>1068-1074</td>
</tr>
<tr>
<td>1469</td>
<td>GM Organisms and the EU Regulatory Environment: Allergenicity as a Risk Component</td>
<td>2005</td>
<td>Proceedings of the Nutrition Society</td>
<td>64</td>
<td>481-486</td>
</tr>
<tr>
<td>1470</td>
<td>Detection of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers</td>
<td>2005</td>
<td>Journal of agricultural and food chemistry</td>
<td>53</td>
<td>10268-10275</td>
</tr>
<tr>
<td>1471</td>
<td>Animal nutrition with feeds from genetically modified plants</td>
<td>2005</td>
<td>Archives of Animal Nutrition</td>
<td>59</td>
<td>14611</td>
</tr>
<tr>
<td>1474</td>
<td>Gaining perspective on the allergenic assessment of genetically modified food crops</td>
<td>2005</td>
<td>Expert Review of Clinical Immunology</td>
<td>1</td>
<td>561-578</td>
</tr>
<tr>
<td>1475</td>
<td>Assessing Genetically Modified Crops to Minimize the Risk of Increased Food Allergy: A Review</td>
<td>2005</td>
<td>International Archives of Allergy and Immunology</td>
<td>137</td>
<td>153-166</td>
</tr>
<tr>
<td>1476</td>
<td>Nutrient digestibility in sheep fed diets containing Roundup Ready or conventional fodder beet, sugar beet, and beet pulp</td>
<td>2005</td>
<td>Journal of Animal Science</td>
<td>83</td>
<td>400-407</td>
</tr>
<tr>
<td>1477</td>
<td>Risks of allergic reactions to biotech proteins in foods: perception and reality</td>
<td>2005</td>
<td>Allergy</td>
<td>60</td>
<td>559-564</td>
</tr>
<tr>
<td>1478</td>
<td>Degradation of Cry1Ab Protein from Genetically Modified Maize in the Bovine Gastrointestinal Tract</td>
<td>2005</td>
<td>J. Agric. Food Chem.</td>
<td>53</td>
<td>1453-1456</td>
</tr>
<tr>
<td>1479</td>
<td>Reversibility of hepatitis nuclear modifications in mice fed on genetically modified soybean</td>
<td>2005</td>
<td>European Journal of Histochemistry</td>
<td>49</td>
<td>237-242</td>
</tr>
<tr>
<td>1480</td>
<td>Assessing the Transfer of Genetically Modified DNA from Feed to Animal Tissues</td>
<td>2005</td>
<td>Transgenic Research</td>
<td>14</td>
<td>775-784</td>
</tr>
<tr>
<td>1481</td>
<td>Can we Predict or Avoid the Allergic Potential of Genetically Modified Organisms?</td>
<td>2005</td>
<td>International Archives of Allergy and Immunology</td>
<td>137</td>
<td>151-152</td>
</tr>
<tr>
<td>1482</td>
<td>Detection of genetically modified corn (Bt176) in spiked cow blood samples by polymerase chain reaction and immunoassay methods</td>
<td>2005</td>
<td>Journal of AOAC International</td>
<td>88</td>
<td>654-664</td>
</tr>
<tr>
<td>1483</td>
<td>Effect of Corn Slage from an Herbicide-Tolerant Genetically Modified Variety on Milk Production and Absence of Transgenic DNA in Milk</td>
<td>2005</td>
<td>Journal of Dairy Science</td>
<td>88</td>
<td>2870-2878</td>
</tr>
<tr>
<td>1484</td>
<td>Effects of grazing residues or feeding corn from a corn rootworm-protected hybrid (MON 863) compared with reference hybrids on animal performance and carcass characteristics</td>
<td>2005</td>
<td>Journal of Animal Science</td>
<td>83</td>
<td>2826-2834</td>
</tr>
<tr>
<td>1485</td>
<td>Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract</td>
<td>2005</td>
<td>Poultry Science</td>
<td>84</td>
<td>1022-1030</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
<td>Journal</td>
<td>Volume</td>
<td>IssueNumber</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>2006</td>
<td>Bioinformatics of Protein Allergenicity</td>
<td>Gibson J</td>
<td>Molecular Nutrition & Food Research</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn</td>
<td>Hammond B, Lemen J, Dukde R, Ward D, Jiang C, Nemeth M, Burns J</td>
<td>Food and Chemical Toxicology</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Results of a 90-day safety assurance study with rats fed grain from corn boron-protected corn</td>
<td>Hammond B, Dukde R, Lemen J, Nemeth MA</td>
<td>Food and Chemical Toxicology</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Digestion Assays in Allergenicity Assessment of Transgenic Proteins</td>
<td>Herman RA, Storer NP, Gao Y</td>
<td>Environmental Health Perspectives</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Food Allergies: Prevalence, Molecular Characterization, and Treatment/Prevention Strategies</td>
<td>Lee LA, Burks AW</td>
<td>Annual Review of Nutrition</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Degradation of transgenic Cry1Ab DNA and protein in Bt - 176 maize during the ensiling process</td>
<td>Lutz B, Wiedemann S, Albrecht C</td>
<td>Journal of Animal Physiology and Animal Nutrition</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>IgE binding to proteins from sesame and assessment of allergenicity: implications for biotechnology?</td>
<td>Orufo E, Morgan MRA</td>
<td>Biotechnology Letters</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Genetically modified plants and food hypersensitivity diseases: Usage and implications of experimental models for risk assessment</td>
<td>Prescott VE, Hogan SP</td>
<td>Pharmacology & Therapeutics</td>
<td>111</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment</td>
<td>Ricard G, McEwan NR, Dutilh BE, Jouary J, P. Macheboeur J, D'Milsumon M, McIntosh</td>
<td>BMC Genomics</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>In situ studies on the time-dependent degradation of recombinant corn DNA and protein in the bovine rumen</td>
<td>Wiedemann S, Lutz B, Kurzt H, Schwarz F, Albrecht C</td>
<td>Journal of Animal Science</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>A Proteomic Study to Identify Soya Allergens – The Human Response to Transgenic versus Non-Transgenic Soya Samples</td>
<td>Batista R, Martins L, Pinto P, Ricardo CP, Oliveira MM</td>
<td>International Archives of Allergy and Immunology</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>Strategies to evaluate the safety of bioengineered foods</td>
<td>Delaney B</td>
<td>International Journal of Toxicology</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>Toxicity Studies of Genetically Modified Plants: A Review of the Published Literature</td>
<td>Domingo JL</td>
<td>Critical Reviews in Food Science and Nutrition</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>Report of an Expert Panel on the reanalysis by of a 90-day study conducted by Monsanto in support of the safety of a genetically modified corn variety (MON 863)</td>
<td>Doull J, Gayter D, Grein HA, Lovell DP, Lynch B, Munro IC</td>
<td>Food and Chemical Toxicology</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal</td>
<td>Volume</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>1517</td>
<td>Longer resistance of some DNA traits from BT176 maize to gastric juice from gastrointestinal affected patients</td>
<td>Ferrini AM, Mannoni V, Pontieri E, Poursabahan M</td>
<td>2007</td>
<td>International Journal of Immunopharmacology</td>
<td>20</td>
</tr>
<tr>
<td>1518</td>
<td>Studies on feeds from genetically modified plants (GMP) – Contributions to nutritional and safety assessment</td>
<td>Flachowsky G, Aulich K, Böhme H, Halle I</td>
<td>2007</td>
<td>Animal Feed Science and Technology</td>
<td>133</td>
</tr>
<tr>
<td>1519</td>
<td>Serum testing of genetically modified soybeans with special emphasis on potential allergenicity of the heterologous protein</td>
<td>Hoff M, Son DY, Gubesch M, Atn, K. Lee St, Verhe S, Goodman RE, Ballmer - Weber BK, Bannion</td>
<td>2007</td>
<td>Molecular Nutrition & Food Research</td>
<td>51</td>
</tr>
<tr>
<td>1527</td>
<td>Food allergies, cross-reactions and agroallergological biotechnologies</td>
<td>Póczos M, Hákusza J, Jesenak M, Villa MP, 2007</td>
<td>2007</td>
<td>Advances in Medical Sciences</td>
<td>52</td>
</tr>
<tr>
<td>1529</td>
<td>A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats</td>
<td>Schroeder M, Poulsen J, Wilcks A, Kroghsbo S, Miller A, Frenzel T, Danier J, Rychnik M, 2007</td>
<td>2007</td>
<td>Food and Chemical Toxicology</td>
<td>45</td>
</tr>
<tr>
<td>1530</td>
<td>New Analysis of a Rat Feeding Study with a Genetically Modified Maize Reveals Signs of Hepatorenal Toxicity</td>
<td>Serali G, E. Cellier D, Vendomois JS, 2007</td>
<td>2007</td>
<td>Archives of Environmental Contamination and Toxicology</td>
<td>52</td>
</tr>
<tr>
<td>1536</td>
<td>Molecular profiles: A new tool to substantiate serum banks for evaluation of potential allergenicity of GMO</td>
<td>Barber D, Rodríguez P, Salcedo G, 2008</td>
<td>2008</td>
<td>Food and Chemical Toxicology</td>
<td>46</td>
</tr>
<tr>
<td>1537</td>
<td>Impact of Bacillus thuringiensis toxin Cry1Ab on rumin epithelial cells (REC) - A new in vitro model for safety assessment of recombinant food compunds</td>
<td>Bondzio A, Stumpff F, Schrøder M, Martens H, Einspanier R, 2008</td>
<td>2008</td>
<td>Food and Chemical Toxicology</td>
<td>46</td>
</tr>
<tr>
<td>1541</td>
<td>The genetically modified foods debate: demystifying the controversy through analytical chemistry</td>
<td>Daunert S, Deo S, Morin X, Roder A, 2008</td>
<td>2008</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>392</td>
</tr>
</tbody>
</table>
Fallarero A, Ainasoja M, Sandberg M, Teeri TH, Vuorela PM 2009 GT1-7 cell-based cytotoxicity screening assay on 96-well microliterplates as a platform for the safety assessment of genetically modified Gerbera hybrid extracts Drug and Chemical Toxicology 32 120-127

He XY, Tang MZ, Luo YB, Li X, Cao SS, Yu JJ, Delaney B, Huang KL 2009 A 90-day toxicology study of transgenic lysine-rich maize grain (Y642) in Sprague-Dawley rats The Open Plant Science Journal 3 49-53

Houuet-Guichery C, Mouquet D, Freysinet M, Currier T, Martorena A, Zhou J, Bates EEM, Feron V, J-M 2009 Safety evaluation of the double mutant s-eno pyrurylshikimate-3-phosphate synthase (2mEPSPS) from maize that confers tolerance to glyphosate herbicide in transgenic plants Regulatory Toxicology and Pharmacology 54 143-153

Hirai T, Watanabe S, Tatemme Y, Hiramoto M, Kato H 2009 Qualitative polymerase chain reaction methods for detecting major food allergens (peanut, soybean, and wheat) by using internal transcribed spacer region Journal of AOAC International 92 1464-1471

Iwasuta SI, Petrick JS, Heseltine SE, Zhang Y, Guo L, Reynolds TL, Rice JF, Allen E, Roberts JK 2009 Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes Food and chemical toxicology 47 353-360

Jubb DR, Herman RA, Thomas J, Brooks KJ, Delaney B 2009 Acute and repeated dose (28 day) mouse oral toxicology studies with Cry34Ab1 and Cry35Ab1 Bt proteins used in coleopteran resistant DAS-59122-7 corn Regulatory Toxicology and Pharmacology 54 154-163

Ladics GS, Selgrade MK 2009 Identifying food proteins with allergenic potential: Evolution of approaches to safety assessment and research to provide additional tools Regulatory Toxicology and Pharmacology 54 52-56

Magana-Gómez JA, Gaiderón de la Barca AM 2009 Risk assessment of genetically modified crops for nutrition and health Nutrition Reviews 67 16-Jan

Mohanta RK, Singhal KK, Tyagi 2009 Genetic engineering of plant food with reduced allergenicity Frontiers in Bioscience: A Journal and Virtual Library 14 59-71

Sérialin G-E, de Vendômois JS, Cellier D, Sultan C, Biusti M, Gallagher L, Antoniou 2009 How Subchronic and Chronic Health Effects can be Neglected for GMOs, Pesticides or Chemicals International Journal of Biological Sciences 5 438-443

Sten HH, Riese DW, Smith BL, Hinds MA, Sauber TE, Pedersen C, Wulf DM, Peters DJ 2009 Evaluation of corn grain with the genetically modified intro trait DAS-59122-7 fed to growing-finishing pigs Journal of Animal Science 87 1254-1260

Xu W, Cao S, He XL, Yu Y, Guo X, Yuan Y, Huang K 2009 Safety assessment of Cry1Ab Bac fusion protein Food and Chemical Toxicology 47 1459-1465

Ajhia V, Quatchatzadeh M, Ahuja V, Steller D, Albrecht A, Stahlmann R 2010 Evaluation of biotechnology-derived novel proteins for the risk of food-allergic potential: advances in the development of animal models and future challenges Archives of Toxicology 84 909-917

Battistelli S, Citterio B, Baldelli B, Pariani C, Malatesta M 2010 Histochemical and morpho-metrical study of mouse intestine epithelium after a long term diet containing genetically modified soybeans European Journal of Histochemistry 54

Belanche A, Enròs IR, Balcells J, Calleja L 2010 Use of quantitative real - time PCR to assess the in vitro survival of specific DNA gene sequences of rumen microbes under simulated abomasal conditions Journal of Animal Physiology and Animal Nutrition 94 204-211

Bolt HM, Hengstler JG 2010 Testing of genetically modified novel proteins for allergenicity in food and feed: a toxicological and regulatory challenge Archives of Toxicology 84 907-908

Datepane JB, Chagas MA, Vellard GC, Ramos CN, Boaventura GT 2010 The Impact of Non- and Genetically Modified Soybean Diets in Aorta Wall Remodeling Journal of Food Science 75 T126-T131

Elfa 2010 Scientific Opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed Journal of agricultural and food chemistry 58 3222-3231
<table>
<thead>
<tr>
<th>Citation</th>
<th>Year</th>
<th>Title</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgins SE, Elledstad LE, Trakooljil N, McCarty F, Saliba J, Logburn LA, Portier TE</td>
<td>2010</td>
<td>Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding</td>
<td>BMC Genomics</td>
</tr>
<tr>
<td>Kim DK, Lillehoj HS, Lee SH, Jiang SL, Bravo D</td>
<td>2010</td>
<td>High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin</td>
<td>Poultry Science</td>
</tr>
<tr>
<td>Meja J, Jacobs CM, Utterback PL, Parsons CM, Rice D, Sanders C, Smith B, Itams C, Sauber T</td>
<td>2010</td>
<td>Evaluation of the nutritional equivalency of soybean meal with the genetically modified trait DP-305423-1 when fed to laying hens</td>
<td>Poultry Science</td>
</tr>
<tr>
<td>Nakajima O, Koyano S, Aiya-Jones H, Sawada JI, Teshima R</td>
<td>2010</td>
<td>Confirmation of a predicted lack of IgE binding to Cry3Bb1 from genetically modified (GM) crops</td>
<td>Regulatory Toxicology and Pharmacology</td>
</tr>
<tr>
<td>Paul V, Guertler P, Wiedemann S, Meyer HHD</td>
<td>2010</td>
<td>Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion</td>
<td>Transgenic Research</td>
</tr>
<tr>
<td>Rapp D</td>
<td>2010</td>
<td>DNA extraction from bovine faeces: current status and future trends</td>
<td>Journal of Applied Microbiology</td>
</tr>
<tr>
<td>Rouquié D, Capt A, Eby WH, Sekar V, Herouzet-Guicheny C</td>
<td>2010</td>
<td>Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach</td>
<td>Regulatory Toxicology and Pharmacology</td>
</tr>
<tr>
<td>Taylor SL, Baumert JL</td>
<td>2010</td>
<td>Cross-Contamination of Foods and Implications for Food Allergic Patients</td>
<td>Current Allergy and Asthma Reports</td>
</tr>
<tr>
<td>Wilcks A, Jacobsen B</td>
<td>2010</td>
<td>Lack of detectable DNA uptake by transformation of selected recipients in mono-associated rats</td>
<td>BMC Research Notes</td>
</tr>
<tr>
<td>Yonemochi C, Suga K, Harada C, Hanazumi M</td>
<td>2010</td>
<td>Tevaluation of transgenic event CBH 351 (StarLink) corn in pig</td>
<td>Animal Science Journal</td>
</tr>
<tr>
<td>Abdel-Patient K, Guimaraes VP, Paris A, Drumare M-F, Ah-Leung S, Lamourette P, Nevers M-</td>
<td>2011</td>
<td>Immunological and Metabolic Impacts of Administration of Cry1Ab Protein and MON 810 Maize in Mouse</td>
<td>Immunological and Metabolic Impacts of Administration of Cry1Ab Protein and MON 810 Maize in Mouse</td>
</tr>
<tr>
<td>Altenbach SB, Allen PV</td>
<td>2011</td>
<td>Transformation of the US bread wheat ‘Butte 86’ and silencing of omega-5 gliadin genes</td>
<td>GM crops</td>
</tr>
<tr>
<td>Breuk MJ, Cvetkovic B, Rice DW, Smith B, Lopes MA, Owens FJ, Samsa C, Sauber TE</td>
<td>2011</td>
<td>Performance of lactating dairy cows fed corn as whole plant silage and grain produced from genetically modified corn containing event DAS-69122-7 compared to a nontransgenic</td>
<td>Journal of Dairy Science</td>
</tr>
<tr>
<td>Cao SX, Wu L, Luo Y, He X, Yuan Y, Ran W, Liang L, Huang K</td>
<td>2011</td>
<td>Metabonomics study of transgenic Bacillus thuringiensis rice (T2A-1) in a 90-day dietary toxicity study in rats</td>
<td>Molecular BioSystems</td>
</tr>
<tr>
<td>Domingo JL, Giné Borondona J</td>
<td>2011</td>
<td>A literature review on the safety assessment of genetically modified plants</td>
<td>Environment International</td>
</tr>
<tr>
<td>Goodman RE, Tetteh AO</td>
<td>2011</td>
<td>Suggested Improvements for the Allergenicity Assessment of Genetically Modified Plants Used in Foods</td>
<td>Current Allergy and Asthma Reports</td>
</tr>
<tr>
<td>Hammond BG, Jez JM</td>
<td>2011</td>
<td>Impact of food processing on the safety assessment for proteins introduced into biotechnology-derived soybean and corn crops</td>
<td>Food and Chemical Toxicology</td>
</tr>
<tr>
<td>Herman EM, Burks AW</td>
<td>2011</td>
<td>The impact of plant biotechnology on food allergy</td>
<td>Current Opinion in Biotechnology</td>
</tr>
<tr>
<td>Herman RA, Dunville CM, Jueberg DR, Fletcher DW, Cromwell GL</td>
<td>2011</td>
<td>Performance of broiler chickens fed event DAS-40278-9 maize containing the aryloxyalkanoate dioxygenase-1 protein</td>
<td>Regulatory Toxicology and pharmacology: RTP</td>
</tr>
<tr>
<td>Herman RA, Dunville CM, Jueberg DR, Fletcher DW, Cromwell GL</td>
<td>2011</td>
<td>Performance of broiler chickens fed diets containing DAS-68416-4 soybean meal</td>
<td>GM crops</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citation</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1641</td>
<td>Endogenous allergen upregulation: Transgenic vs. traditionally bred crops</td>
<td>2011</td>
<td>Food and Chemical Toxicology</td>
<td>49</td>
<td>2667-2669</td>
</tr>
<tr>
<td>1643</td>
<td>Ladics GS, Cressman RF, Herouet-Quicheney C, Herman RA, Privalle J, Song P, Ward JM, McClain S</td>
<td>2011</td>
<td>Regulatory Toxicology and Pharmacology</td>
<td>60</td>
<td>46-53</td>
</tr>
<tr>
<td>1646</td>
<td>Randhawa GJ, Singh M, Grover M</td>
<td>2011</td>
<td>Food and Chemical Toxicology</td>
<td>49</td>
<td>356-362</td>
</tr>
<tr>
<td>1647</td>
<td>Rennen MAJ, Koster S, Krul CAM, Houben GF</td>
<td>2011</td>
<td>Food and Chemical Toxicology</td>
<td>49</td>
<td>933-940</td>
</tr>
<tr>
<td>1648</td>
<td>Sharma P, Singh AK, Singh BP, Gaur SN, Arora N</td>
<td>2011</td>
<td>Journal of agricultural and food chemistry</td>
<td>59</td>
<td>9990-9995</td>
</tr>
<tr>
<td>1650</td>
<td>Tripathi MK, Mondal D, Somvanshi R, Karim SA</td>
<td>2011</td>
<td>Haematology, blood biochemistry and tissue histopathology of lams maintained on diets containing an insect controlling protein (Cry1Ac) in Bt-cottonseed</td>
<td>95</td>
<td>545-555</td>
</tr>
<tr>
<td>1651</td>
<td>Verma AK, Misra A, Subash S, Das M, Dwivedi PD</td>
<td>2011</td>
<td>Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops</td>
<td>33</td>
<td>410-422</td>
</tr>
<tr>
<td>1665</td>
<td>Chung YJ, Honsmans S, Grevel RWR, Houben GF, Rona RJ, Ward R, Baka A</td>
<td>2012</td>
<td>Application of scientific criteria to food allergens of public health importance</td>
<td>64</td>
<td>315-323</td>
</tr>
<tr>
<td>1666</td>
<td>Fonseca C, Planchon S, Renault J, Oliveira MM, Batista R</td>
<td>2012</td>
<td>Characterization of maize allergens - MON810 vs. its non-transgenic counterpart</td>
<td>75</td>
<td>2027-2037</td>
</tr>
<tr>
<td>1667</td>
<td>Gendel SM</td>
<td>2012</td>
<td>The Regulatory Challenge of Food Allergies</td>
<td>75</td>
<td>2027-2037</td>
</tr>
<tr>
<td>1668</td>
<td>Harper B, McClain S, Ganko E W</td>
<td>2012</td>
<td>The Regulatory Challenge of Food Allergies</td>
<td>75</td>
<td>2027-2037</td>
</tr>
<tr>
<td>1671</td>
<td>Mishra A, Gaur SN, Singh BP, Arora N</td>
<td>2012</td>
<td>In silico assessment of the potential allergenicity of transgenes used for the development of GM food crops</td>
<td>50</td>
<td>1334-1339</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>2002</td>
<td>Van den Eede G, Kay S, Arikam E, Schimmel H</td>
<td>Analytical Challenges: Bridging the Gap from Regulation to Enforcement</td>
<td>Journal of AOAC International</td>
<td>85</td>
<td>757-761</td>
</tr>
<tr>
<td>2002</td>
<td>Wiseman G</td>
<td>PCR technology for screening and quantification of genetically modified organisms (GMOs)</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>375</td>
<td>985-993</td>
</tr>
<tr>
<td>2003</td>
<td>Bauer T, Weiler P, Hammes WP, Hertel C</td>
<td>The Effect of Processing Parameters on DNA Degradation in Food</td>
<td>European Food Research and Technology</td>
<td>217</td>
<td>338-343</td>
</tr>
<tr>
<td>2003</td>
<td>Holst-Jensen A, Renning SB, Lavalette A, Berdal KG</td>
<td>PCR technology for screening and quantification of genetically modified organisms (GMOs)</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>375</td>
<td>985-993</td>
</tr>
<tr>
<td>2003</td>
<td>Homola J</td>
<td>Present and Future of Surface Plasmon Resonance Biosensors</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>377</td>
<td>528-539</td>
</tr>
<tr>
<td>2003</td>
<td>Khanamirzadi M, Bauer T, Hammes WP, Hertel C</td>
<td>Effect of Food Processing on the Fate of DNA Degradation and Transformation Capability in Bacillus subtilis</td>
<td>Systematic and Applied Microbiology</td>
<td>26</td>
<td>495-501</td>
</tr>
<tr>
<td>2003</td>
<td>Mannelli I, Mininni M, Tombelli S, Mastoni M</td>
<td>Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection</td>
<td>Biosensors and Bioelectronics</td>
<td>18</td>
<td>129-140</td>
</tr>
<tr>
<td>2003</td>
<td>Rud K, Rud I, Holck A</td>
<td>A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed</td>
<td>Nucleic Acids Research</td>
<td>31</td>
<td>e62-e62</td>
</tr>
<tr>
<td>2004</td>
<td>Bauer T, Hammes WP, Haase NJ, Hertel C</td>
<td>Effect of food components and processing parameters on DNA degradation in food</td>
<td>Environmental Biosafety Research</td>
<td>3</td>
<td>215-223</td>
</tr>
<tr>
<td>2004</td>
<td>European C</td>
<td>COMMISSION RECOMMENDATION of 4 October 2004 on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms</td>
<td>Off J Eur Union</td>
<td>348</td>
<td>18-26</td>
</tr>
<tr>
<td>2004</td>
<td>Glynou K, Ioannou PC, Christopoulos TK</td>
<td>Detection of Transgenes in Soybean Via a Polymerase Chain Reaction and a Simple Bioluminescent Assay Based on a Universal Scramm-Labeled Bioluminescent Probe</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>378</td>
<td>1748-1753</td>
</tr>
<tr>
<td>2004</td>
<td>Miraglia M, Berdal KG, Bétra C, Corbier P, Holst-Jensen A, Kok EJ, Marinu HJ, Schimmel</td>
<td>Detection and Traceability of Genetically Modified Organisms in the Food Production Chain</td>
<td>Food and Chemical Toxicology</td>
<td>42</td>
<td>1157-1180</td>
</tr>
<tr>
<td>2004</td>
<td>Taverniers I, Van Bockstaele E, De Loose M</td>
<td>Cloned Plasmid DNA Fragments as Calibrators for Controlling GMOs: Different Real-Time Duplex Quantitative PCR Methods</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>378</td>
<td>1198-1207</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
<td>Key Points</td>
<td>Journals</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>2007</td>
<td>Qualitative and Quantitative Polymers Chain Reaction Assays for an Alfalfa (Medicago sativa)-Specific Reference Gene To Use in Monitoring Transgenic Cultivars</td>
<td>Alexander TW, Reuter T, McAllister TA</td>
<td>Development of new methods for GMO detection.</td>
<td>J. Agric. Food Chem.</td>
<td>55</td>
</tr>
<tr>
<td>2007</td>
<td>Accumulation of amplified target DNAs using thiol/biotin labeling, S1 nuclease, and ferrocene-streptavidin-magnetic system and a direct detection of specific DNA signals with</td>
<td>Chaumpluk P, Keenan K, Takamura Y, Tamata E</td>
<td>Development of new methods for GMO detection.</td>
<td>Science and Technology of Advanced Materials</td>
<td>8</td>
</tr>
<tr>
<td>2007</td>
<td>EU regulations on the traceability and detection of GMOs: difficulties in interpretation, implementation and compliance</td>
<td>Davisin J, Berthieu Y</td>
<td>Development of new methods for GMO detection.</td>
<td>CAB Reviews</td>
<td>2</td>
</tr>
<tr>
<td>1801</td>
<td>Ocana MF, Fraser PD, Patel RKP, Halter JM, Bramley PM</td>
<td>2007</td>
<td>Mass spectrometric detection of CP4 EPSPS in genetically modiﬁed soya and maize</td>
<td>Rapid Communications in Mass Spectrometry</td>
<td>21</td>
</tr>
<tr>
<td>1806</td>
<td>Singh CK, Ojha A, Bhatacharag RK, Kachru DN</td>
<td>2007</td>
<td>Detection and characterization of recombinant dna expressing virus-type insecticidal gene in GMOs—standard single, multiplex and construct-speciﬁc PCR assays</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>390</td>
</tr>
<tr>
<td>1807</td>
<td>Singh CK, Ojha A, Kachru DN</td>
<td>2007</td>
<td>Detection and characterization of cry1Ac transgene construct in Bt cotton: multiple polymerase chain reaction approach</td>
<td>Journal of AOAC International</td>
<td>90</td>
</tr>
<tr>
<td>1810</td>
<td>Weighardt F</td>
<td>2007</td>
<td>GMO quantiﬁcation in processed food and feed</td>
<td>Nat Biotech</td>
<td>25</td>
</tr>
<tr>
<td>1812</td>
<td>Wu Y, Wu G, Xiao L, Lu C</td>
<td>2007</td>
<td>Event-Speciﬁc Qualitative and Quantitative PCR Detection Methods for Transgenic Rastered Hybrids MS1×RF1 and MS1×RF2</td>
<td>J. Agric. Food Chem.</td>
<td>55</td>
</tr>
<tr>
<td>1817</td>
<td>Zhang D, Corlet A, Fouilloux S</td>
<td>2007</td>
<td>Impact of genetic structures on haploid genome-based quantiﬁcation of genetically modiﬁed DNA: theoretical considerations, experimental data in MON 810 maize kernels</td>
<td>Transgenic Research</td>
<td>17</td>
</tr>
<tr>
<td>1821</td>
<td>Bug Galpin M, Cankar K, Zei J, Gruden K</td>
<td>2008</td>
<td>Comparison of different real-time PCR chemistries and their suitability for detection and quantiﬁcation of genetically modiﬁed organisms</td>
<td>BMC Biotechnology</td>
<td>8</td>
</tr>
<tr>
<td>1825</td>
<td>Ellenis DS, Kalogiannis DP, Glymou K, Ioannou PC, Christopoulos TK</td>
<td>2008</td>
<td>Advances in molecular techniques for the detection and quantiﬁcation of genetically modiﬁed organisms</td>
<td>Analytical and Bioanalytical Chemistry</td>
<td>392</td>
</tr>
</tbody>
</table>

1925 Dixon AZ, Prins TW, Dijk JP, Arsi ACM, Scholten IMJ, Koku EJ 2011 Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms Analytical and Bioanalytical Chemistry 400 1433-1442

1928 Garcia-Cañas V, Gonzalez R, Cifuentes A, Gonzalez R, Cifuentes A 2011 Detection of Genetically Modified Maize by the Polymorphism Chain Reaction and Capillary Gel Electrophoresis with UV Detection and Laser-Induced Fluorescence J. Agric. Food Chem. 50 10161-1021

1944 Li X, Pan L, Li J, Zhang Q, Zhang SL, Yang L 2011 Establishment and application of event-specific polymerase chain reaction methods for two genetically modified soybean events, A2704-12 and A3537-12 Journal of agricultural and food chemistry 59 13188-13194

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal or Source</th>
<th>Reference</th>
<th>Abstract or Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>Jiang C, Xu S, Zhang S, Jia L</td>
<td>GMO detection using a bioluminescent real-time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use</td>
<td>BMC Biotechnology</td>
<td>2012</td>
<td>12</td>
</tr>
<tr>
<td>1985</td>
<td>Li P, Jia JW, Jiang LX, Zhu H, Bao L, Wang JB, Tang XM, Pan AH</td>
<td>Event-specific qualitative and quantitative PCR detection of the GMO cassava (Dianthus caryophyllus) variety Moonlite based upon the S-6 transgene integration sequence</td>
<td>Genetics and molecular research: GMR</td>
<td>2012</td>
<td>11</td>
</tr>
<tr>
<td>1995</td>
<td>Yang C, Zhang D, Yang L</td>
<td>Development of event-specific PCR detection methods for genetically modified tomato Huatan No. 1</td>
<td>Journal of the science of food and agriculture</td>
<td>2012</td>
<td>12</td>
</tr>
<tr>
<td>1999</td>
<td>Aguilera, M. M, Querci</td>
<td>Assessing Copy Number of MON 810 Integrations in Commercial Seed Maize Varieties by 5’ Event-Specific Real-Time PCR Validated Method Coupled to 2 ΔΔCT Analysis</td>
<td>Food Analytical Methods</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Ancel, V. r. G, Bellocchi,</td>
<td>GMO sampling strategies in the food and feed chain.</td>
<td>Research in Microbiology</td>
<td>2001</td>
<td>823-835</td>
</tr>
<tr>
<td>2004</td>
<td>Andersen, J. T. n., T. SchAver,</td>
<td>Using inactivated microbial biomass as fertilizer: the fate of antibiotic resistance genes in the environment</td>
<td>Research in Microbiology</td>
<td>2003</td>
<td>823-833</td>
</tr>
<tr>
<td>2006</td>
<td>Azadi, H. and P. Ho</td>
<td>Genetically modified and organic crops in developing countries: A review of options for food security</td>
<td>Biotechnology Advances</td>
<td>2006</td>
<td>160</td>
</tr>
<tr>
<td>2008</td>
<td>Barnett, J., A. McConnon</td>
<td>Development of strategies for effective communication of food risks and benefits across Europe: Design and conceptual framework of the FoodRisC project.</td>
<td>BMC public health</td>
<td>2011</td>
<td>308</td>
</tr>
<tr>
<td>2009</td>
<td>N Barrera-Bassols, M. ESTIERS, QOYEB SCHMIDT</td>
<td>Saberes locales y defensa de la agrobiodiversidad: maizeres nativos vs. maizeres transgenicos en Mexico</td>
<td>Papeles de relaciones ecologica y cambio global</td>
<td>2009</td>
<td>107</td>
</tr>
<tr>
<td>2010</td>
<td>Beintema, N. M. and G-J. Stads</td>
<td>Measuring agricultural research investments: a revised global picture</td>
<td>ASTI Background Note, Agricultural Science and Technology Indicators Initiative.</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Bethwell, C., F. Graef</td>
<td>Prioritizing GMO monitoring sites in dynamic cultivation systems and their environment: a conceptual on-farm approach</td>
<td>Theorie in der Ökologie</td>
<td>2012</td>
<td>16</td>
</tr>
<tr>
<td>ID</td>
<td>Authors</td>
<td>Year</td>
<td>Title</td>
<td>Journal/Book (Vol)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>------</td>
<td>--</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>2044</td>
<td>Ervin, D. E., Y. Carriere</td>
<td>2010</td>
<td>The impact of genetically engineered crops on farm sustainability in the United States</td>
<td>National Research Council</td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>Eschenbach, C., B. Breckling</td>
<td>2010</td>
<td>Potential GM-maize cropping in Schleswig-Holstein II: model and GIS based approaches to estimate the GM-share in conventional maize yield</td>
<td>Large-area effects of GM crop cultivation (16)</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>Ewen, S. W. B. and A. Pusztai</td>
<td>1999</td>
<td>Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine</td>
<td>The Lancet (354(9187)) 1353-1354.</td>
<td></td>
</tr>
<tr>
<td>2047</td>
<td>Tornøe Fagerstrom, C. Dexelsius, Ulf Magnusson</td>
<td>2012</td>
<td>Stop worrying; start growing</td>
<td>EMBIO reports (13(6))</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>Ferrer-Miralles, N., J. Domingo-Espain</td>
<td>2009</td>
<td>Microbial factories for recombinant pharmaceuticals</td>
<td>Microbial Cell Factories (8(1)) 17</td>
<td></td>
</tr>
<tr>
<td>2049</td>
<td>Ferry, N. and A. M. R. Gatehouse</td>
<td>2009</td>
<td>Environmental impact of genetically modified crops</td>
<td>Nature (478(7369)) 337-342</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>Foley, J. A. N., Ramankutty</td>
<td>1999</td>
<td>Solutions for a cultivated planet</td>
<td>Bioresource Technology (101(13)) 4775-4800</td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>Garfinkel, M. S., D. Endy</td>
<td>2007</td>
<td>Synthetic genomics: options for governance</td>
<td>Industrial Biotechnology (3(4)) 333-365</td>
<td></td>
</tr>
<tr>
<td>2052</td>
<td>Gatehouse, A. M. R., N. Ferry</td>
<td>2007</td>
<td>Insect-resistant biotech crops and their impacts on beneficial arthropods</td>
<td>Philosophical Transactions of the Royal Society B: Biological Sciences (366(1569)) 1438-1452</td>
<td></td>
</tr>
<tr>
<td>2053</td>
<td>Gilbert, J.</td>
<td>1999</td>
<td>Sampling of raw materials and processed foods for the presence of GMOs</td>
<td>Food control (10(6)) 363-365</td>
<td></td>
</tr>
<tr>
<td>2054</td>
<td>Gilligan, C. A.</td>
<td>2008</td>
<td>Sustainable agriculture and plant diseases: an epidemiological perspective</td>
<td>Philosophical Transactions of the Royal Society B: Biological Sciences (363(1492)) 741-759.</td>
<td></td>
</tr>
<tr>
<td>2055</td>
<td>Goldman, I. L.</td>
<td>2008</td>
<td>Molecular breeding of healthy vegetables</td>
<td>EMBO reports (12(2)) 96-102</td>
<td></td>
</tr>
<tr>
<td>2058</td>
<td>Goodwin, R. E. and A. O. Tetteh</td>
<td>2011</td>
<td>Suggested improvements for the allergenicity assessment of genetically modified plants used in foods</td>
<td>Current allergy and asthma reports (11(4)) 317-324</td>
<td></td>
</tr>
<tr>
<td>2059</td>
<td>Gorelli, S., A. Santucc</td>
<td>2008</td>
<td>Spatial simulation model to analyse pollen dispersal and coexistence scenarios between GM and GM-free crops.</td>
<td>Theorie in der Okologie (14)</td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td>Graff, G., D. Roland-Holdt</td>
<td>2007</td>
<td>Monitoring genetically modified plants (GMP): Data harmonisation and coordination on multiple levels to ensure data quality and comparability</td>
<td>Journal of Xonsumer Protection and Food Safety (2) 72-75</td>
<td></td>
</tr>
<tr>
<td>2062</td>
<td>Graff, G. D., D. Zilberman</td>
<td>2009</td>
<td>The contraction of agbiotech product quality innovation</td>
<td>Nature biotechnology (27(8)) 702-704</td>
<td></td>
</tr>
<tr>
<td>2064</td>
<td>Guerri, D.</td>
<td>2006</td>
<td>Threat to global GM soybean access as patent nears expiry</td>
<td>Nature biotechnology (31(1)) 42318</td>
<td></td>
</tr>
<tr>
<td>2065</td>
<td>Guillette, E. A., M. a. M. Meza</td>
<td>1998</td>
<td>An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico</td>
<td>Environmental Health Perspectives (106(6)) 347</td>
<td></td>
</tr>
<tr>
<td>2066</td>
<td>Hain, S., A. Santucc</td>
<td>2009</td>
<td>Monitoring genetically modified plants (GMP): Data harmonisation and coordination on multiple levels to ensure data quality and comparability</td>
<td>Journal of Xonsumer Protection and Food Safety (2) 72-75</td>
<td></td>
</tr>
<tr>
<td>2067</td>
<td>Hain, S., A. Santucc</td>
<td>2009</td>
<td>Monitoring genetically modified plants (GMP): Data harmonisation and coordination on multiple levels to ensure data quality and comparability</td>
<td>Journal of Xonsumer Protection and Food Safety (2) 72-75</td>
<td></td>
</tr>
<tr>
<td>2068</td>
<td>Hain, S., A. Santucc</td>
<td>2009</td>
<td>Monitoring genetically modified plants (GMP): Data harmonisation and coordination on multiple levels to ensure data quality and comparability</td>
<td>Journal of Xonsumer Protection and Food Safety (2) 72-75</td>
<td></td>
</tr>
<tr>
<td>2069</td>
<td>Hain, S., A. Santucc</td>
<td>2009</td>
<td>Monitoring genetically modified plants (GMP): Data harmonisation and coordination on multiple levels to ensure data quality and comparability</td>
<td>Journal of Xonsumer Protection and Food Safety (2) 72-75</td>
<td></td>
</tr>
<tr>
<td>2070</td>
<td>Hartnell, G. F., G. L. Cromwell</td>
<td>2013</td>
<td>Best practices for the conduct of animal studies to evaluate crops genetically modified for output traits</td>
<td>ILSI, Washington, DC.</td>
<td></td>
</tr>
<tr>
<td>2072</td>
<td>Heinemann, J. A. S. Z. Agapito- Tenfen</td>
<td>2009</td>
<td>A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments</td>
<td>Environment international (55) 43-55</td>
<td></td>
</tr>
<tr>
<td>2073</td>
<td>Hendriksma, H. P., Meke Küting</td>
<td>2013</td>
<td>Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria</td>
<td>PLoS one (8(3)) e59589</td>
<td></td>
</tr>
<tr>
<td>2074</td>
<td>Herman, R. A. and W. D. Price</td>
<td>2013</td>
<td>Unintended compositional changes in GM crops: 20 Years of research</td>
<td>Journal of agricultural and food chemistry</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title of the Paper</td>
<td>Journal and Volume</td>
<td>Page Numbers</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>M. Hernández, M. P. T. Esteve</td>
<td>A specific real-time quantitative PCR detection system for event MON 810 in MAIZE YieldGard base on teh 3 - transgene integration sequence</td>
<td>Transgenic Research</td>
<td>12(2) 179-189</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Herrera-Estralla, L. and A. Alvarez-Mora</td>
<td>Genetically modified crops: hope for developing countries? The current GM debate widely ignores the specific problems of farmers and consumers in the developing world</td>
<td>EMBIO reports</td>
<td>2(4) 256</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Hilbeck, A., M. Meier</td>
<td>Environmental risk assessment of genetically modified plants: concepts and controversies.</td>
<td>Environmental Sciences Europe</td>
<td>23(1) 4233</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Holmann, F., M. Otto</td>
<td>A New Method for In Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves</td>
<td>Insects</td>
<td>21(1) 44531</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Holden, M. J., M. Levine</td>
<td>The use of 35S and Tnos expression elements in the measurement of genetically engineered plant materials</td>
<td>Analytical and bioanalytical chemistry</td>
<td>396(6) 2175-2187</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Holme, I. B. k., T. Wendell</td>
<td>Intragenesis and cisgenesis as alternatives to transgenic crop development</td>
<td>Plant biotechnology journal.</td>
<td>179-189</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Horton, R.</td>
<td>Genetically modified foods: "absurd" concern or welcome dialogue?</td>
<td>Lancet</td>
<td>354(9187) 1314</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Hsuyang, L., C. Lihching</td>
<td>Detection of genetically modified soybeans and maize by the polymerase chain reaction method</td>
<td>Journal of Food and Drug Analysis</td>
<td>8(3) 200-207</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Hübner, P., E. Studer</td>
<td>Quantitation of genetically modified organisms in food</td>
<td>Nature Biotechnology</td>
<td>17(11) 1137-1138</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Hyde, J., M. A. Martin</td>
<td>An economic analysis of non-Bt corn refuges</td>
<td>Crop Protection</td>
<td>20(2) 167-171</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Jia, H.</td>
<td>Newsmaker: Biocentury Transgene</td>
<td>Nature Biotechnology</td>
<td>29(1) 42350</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Kathage, J. and M. Qaim</td>
<td>Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India</td>
<td>Proceedings of the National Academy of Sciences</td>
<td>109(29) 11652-11656.</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Klotz-Ingram, C. and K. Day-Rubenstein</td>
<td>The Changing Agricultural Research Environment</td>
<td>AgBioForum</td>
<td>2(1) 24-32</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Klotz-Ingram, C., S. Jans</td>
<td>Farm-level production effects related to the adoption of genetically modified cotton for pest management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Kuiper, H. A.</td>
<td>Summary report of the ILSI Europe workshop on detection methods for novel foods derived from genetically modified organisms</td>
<td>Food control</td>
<td>10(6) 339-350</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Kuiper, H. A., G. A. Kleter</td>
<td>Assessment of the food safety issues related to genetically modified foods</td>
<td>The plant journal</td>
<td>27(6) 503-528</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Kupferschmidt, K.</td>
<td>Amid Europe's Food Fights, EFSA Keeps Its Eyes on the Evidence</td>
<td>Science</td>
<td>338(6111) 1146-1147</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Kuzma, J., A. Kuzhabekova</td>
<td>Improving oversight of genetically engineered organisms</td>
<td>Policy and Society</td>
<td>28(4) 279-299</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Kwiecí and J. nazucı</td>
<td>Genetically modified abominations?</td>
<td>EMBo reports</td>
<td>10(11) 1187-1190</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>J. Lüthy</td>
<td>Detection strategies for food authenticity and genetically modified foods</td>
<td>Food control</td>
<td>10(6) 359-361</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Laffont, J.-L., K. M. Remund</td>
<td>Testing for adventitious presence of transgenic material in conventional seed or grain lots using quantitative laboratory methods: statistical procedures and their implementation</td>
<td>Seed Science Research</td>
<td>15(3) 197-204</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Loza-Rubio, E., E. Rojas-Anaya</td>
<td>Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize</td>
<td>Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Luque-Perez, E., M. Mazzara</td>
<td>Testing the Robustness of Validated Methods for Quantitative Detection of GMOs Across qPCR Instruments</td>
<td>Food Analytical Methods</td>
<td>43101</td>
<td></td>
</tr>
<tr>
<td>2106</td>
<td>Lusser, M., C. Parisi</td>
<td>Deployment of new biotechnologies in plant breeding</td>
<td>Nature biotechnology</td>
<td>30(3)</td>
<td>231-239</td>
</tr>
<tr>
<td>2107</td>
<td>Lüthy, J. r.</td>
<td>1999 Detection strategies for food authenticity and genetically modified foods</td>
<td>Food control</td>
<td>10(6)</td>
<td>359-361</td>
</tr>
<tr>
<td>2108</td>
<td>Ma, Q., C. Gao</td>
<td>2013 Detection of Transgenic and Endogenous Plant DNA Fragments and Proteins in the Digesta, Blood, Tissues, and Eggs of Laying Hens Fed with Phytase Transgenic Corn</td>
<td>PloS one</td>
<td>8(4)</td>
<td>e61138</td>
</tr>
<tr>
<td>2110</td>
<td>Martínez, E. B.</td>
<td>El maíz en Oaxaca: la cosecha de contradicciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2111</td>
<td>Martinelli, L., M. g. Karbarz</td>
<td>Science, safety, and trust: the case of transgenic food</td>
<td>Croatian Medical Journal</td>
<td>54(1)</td>
<td>91</td>
</tr>
<tr>
<td>2112</td>
<td>Matten, S. R., G. P. Head</td>
<td>2008 How governmental regulation can help or hinder the integration of Bt crops within IPM programs. Integration of Insect-Resistant Genetically Modified Crops within IPM Programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2113</td>
<td>McCluskey, J. and J. Swinnen</td>
<td>2011 The media and food-risk perceptions</td>
<td>EMBO reports</td>
<td>12(7)</td>
<td>624-629</td>
</tr>
<tr>
<td>2114</td>
<td>McMullen, M. D., S. Kresovich</td>
<td>2009 Genetic properties of the maize nested association mapping population</td>
<td>Science</td>
<td>325(5941)</td>
<td>737-740</td>
</tr>
<tr>
<td>2116</td>
<td>Mendonca-Hagler, L., L. Souza</td>
<td>2008 Trends in biotechnology and biosafety in Brazil</td>
<td>Environmental Biosafety Research</td>
<td>7(3)</td>
<td>115</td>
</tr>
<tr>
<td>2117</td>
<td>Messeguer, J.</td>
<td>2003 Gene flow assessment in transgenic plants</td>
<td>Plant Cell, Tissue and Organ Culture</td>
<td>73(3)</td>
<td>201-212</td>
</tr>
<tr>
<td>2119</td>
<td>Mewett, O., K. R. Emslie</td>
<td>2008 Maintaining Product Integrity in the Australian Seed and Grain Supply Chain: The Role of Sampling and Testing for GM Events, Bureau of Rural Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2120</td>
<td>Meyer, R.</td>
<td>1999 Development and application of DNA analytical methods for the detection of GMOs in food</td>
<td>Food control</td>
<td>10(6)</td>
<td>391-399</td>
</tr>
<tr>
<td>2121</td>
<td>H. Mielby, P. Saandoe, J. Lassen</td>
<td>2013 Multiple aspects of unnaturalness: are cisgenic crops perceived as being more natural and more acceptable than transgenic crops?</td>
<td>Agriculture and Human</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>2123</td>
<td>Napier, J. A.</td>
<td>2007 The production of unusual fatty acids in transgenic plants</td>
<td>Plant Biol.</td>
<td>58</td>
<td>295-319</td>
</tr>
<tr>
<td>2124</td>
<td>Nickson, T. E. and G. P. Head</td>
<td>1999 FocusEnvironmental monitoring of genetically modified crops</td>
<td>Journal Of Environmental Monitoring</td>
<td>1(6)</td>
<td>101N-105N</td>
</tr>
<tr>
<td>2125</td>
<td>Pacheco Mendivil, F.</td>
<td>1986 Plagas de los cultivos agrícolas en Sonora y Baja California</td>
<td>Libro Técnico</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2126</td>
<td>Parrott, W.</td>
<td>1999 Genetically modified myths and realities</td>
<td>New biotechnology</td>
<td>27(5)</td>
<td>545-551</td>
</tr>
<tr>
<td>2127</td>
<td>Pascher, K., D. Moser</td>
<td>2011 Setup, efforts and practical experiences of a monitoring program for genetically modified plants-An Austrian case study for oilseed rape and maize</td>
<td>Environmental Sciences Europe</td>
<td>23(1)</td>
<td>42339</td>
</tr>
<tr>
<td>2128</td>
<td>Pellegrini, P. A.</td>
<td>2011 What risks and for whom? Argentina’s regulatory policies and global commercial interests in GMOs</td>
<td>Technology in Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2129</td>
<td>Pla, M., A. Nadal</td>
<td>2008 New Multiplexing Tools for Reliable GMO Detection</td>
<td>333-366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2130</td>
<td>Podevin, N., Y. Devos</td>
<td>2005 Transgenic or not? No simple answer!</td>
<td>EMBO reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2132</td>
<td>Porteus, M. H. and D. Carroll</td>
<td>2005 Gene targeting using zinc finger nucleases</td>
<td>Nature biotechnology</td>
<td>23(8)</td>
<td>967-973</td>
</tr>
<tr>
<td>2133</td>
<td>Qaim, M.</td>
<td>2003 Bt cotton in India: Field trial results and economic projections</td>
<td>World Development</td>
<td>31(12)</td>
<td>2115-2127</td>
</tr>
<tr>
<td>2135</td>
<td>Qaim, M., C. E. Pray</td>
<td>2008 Economic and social considerations in the adoption of Bt crops. Integration of insect-resistant genetically modified crops within IPM programs</td>
<td>329-356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2136</td>
<td>Qi, X., He.</td>
<td>2012 Subchronic feeding study of stacked trait genetically-modified soybean (3Ø5423 × 40-3-2) in Sprague-Dawley rats</td>
<td>Food and Chemical Toxicology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Title and Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Raney, T.</td>
<td>Economic impact of transgenic crops in developing countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Raven, P. H.</td>
<td>Transgener in Mexican maize: Desirability or inevitability?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Medick, T.</td>
<td>Coexistence, North American style: Regulation and litigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>Rogers, M.</td>
<td>The Pandora’s box congress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>Rommens, C. M., M. A. Haring</td>
<td>The intragenic approach as a new extension to traditional plant breeding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Rowe, G.</td>
<td>How can genetically modified foods be made publicly acceptable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Ryffel, G. U.</td>
<td>Disarray with GM maize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>Sakamoto, Y., Y. Tada</td>
<td>A 52-week feeding study of genetically modified soybeans in F344 rats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Samvido, O., F. Widmer</td>
<td>A conceptual framework for the design of environmental post-market monitoring of genetically modified plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Sapra, R. L., P. Narain</td>
<td>A general model for sample size determination for collecting germplasm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Schmeller, D. S. and K. Henle</td>
<td>Cultivation of genetically modified organisms: resource needs for monitoring adverse effects on biodiversity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>G.Schmidl, W. Schröder</td>
<td>Implications of GMO cultivation and monitoring-series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>K. Schmidt, J. Schiemann, R. Wilhelm</td>
<td>European-wide GMO-monitoring data management and analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Scholdberg, T. A., T. D. Norden</td>
<td>Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Sexton, S., D. Ziberman</td>
<td>The role of biotechnology in a sustainable biofuel future</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Shi, G., J.-P. Chavas</td>
<td>Commercialized transgenic traits, maize productivity and yield risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Showalter, A. M., S. Heuberger</td>
<td>A primer for using transgenic insecticidal cotton in developing countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Smith, L. M.</td>
<td>Divided We Fall: The Shortcomings of the European Union’s Proposal for Independent Member States to Regulate the Cultivation of Genetically Modified Organisms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>M. Soberón, A. Bravo</td>
<td>Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Soleri, D., D. A. Cleveland</td>
<td>Transgenic crops and crop varietal diversity: the case of maize in Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Stave, J. W.</td>
<td>Detection of new or modified proteins in novel foods derived from GMOs “future needs.”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Stein, A. J. and E. Rodriguez-Cerezo</td>
<td>International trade and the global pipeline of new GM crops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Storer, N. P., J. M. Babcock1031-1038.</td>
<td>Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Subramanian, A. and M. Qaim</td>
<td>Village wide effects of agricultural biotechnology: The case of Bt cotton in India</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Sung, Y. H., I.-J. Baek</td>
<td>Knockout mice created by TALEN-mediated gene targeting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Talebrria, F., D. Karakashvie</td>
<td>Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Tang, X., F. Han</td>
<td>A 90-Day Dietary Toxicity Study of Genetically Modified Rice T1C-1 Expressing Cry1C Protein in Sprague Dawley Rats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Teptler, M., M. Racovita</td>
<td>Putting problem formulation at the forefront of GMO risk analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Terry, C. F., D. J. Shanahan</td>
<td>Real-time detection of genetically modified soya using Lightcycler and ABI 7700 platforms with TaqMan, Scorpion, and SYBR Green I chemistries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Thirtle, C., L. Beyers</td>
<td>Can GM-technologies help the poor? The impact of Bt cotton in Makathini Flats, KwaZulu-Natal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2013 | Tian, J.-C., X.-P. Wang | Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, chrysoperla rutilus
<table>
<thead>
<tr>
<th>Entry</th>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2168</td>
<td>Tironi, M., M. Salazar</td>
<td>Resisting and accepting: Farmers’ hybrid epistemologies in the GMO controversy in Chile.</td>
<td></td>
<td>Technology in Society</td>
<td></td>
</tr>
<tr>
<td>2169</td>
<td>Tonniessen, G. H., J. Toole</td>
<td>Advances in plant biotechnology and its adoption in developing countries</td>
<td>2003</td>
<td>Current Opinion in Plant Biology</td>
<td>6(2) 191-198</td>
</tr>
<tr>
<td>2170</td>
<td>Touyz, L. Z. G.</td>
<td>Genetically modified foods, cancer, and diet: myths and reality</td>
<td>2013</td>
<td>Current Oncology</td>
<td>20(2) e59</td>
</tr>
<tr>
<td>2172</td>
<td>Trapman, S., M. Burns</td>
<td>Guidance document on measurement uncertainty for GMO testing laboratories.</td>
<td>2009</td>
<td>Joint Research Institute for Reference Materials and Measurements</td>
<td>14977</td>
</tr>
<tr>
<td>2173</td>
<td>Traxler, G. and S. Godoy-Avila</td>
<td>Transgenic cotton in Mexico</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2174</td>
<td>Tushy, K., M. Davies,</td>
<td>Monitoring transfer of recombinant and nonrecombinant plasmids between Lactococcus lactis strains and members of the human gastrointestinal microbiota in vivo impact of donor</td>
<td>2002</td>
<td>Journal of applied microbiology</td>
<td>93(6) 954-964</td>
</tr>
<tr>
<td>2175</td>
<td>Vacher, C., D. Bourguet</td>
<td>Fees or refuge? which is better for the sustainable management of insect resistance to transgenic Bt corn?</td>
<td>2006</td>
<td>Biology letters</td>
<td>2(2) 198-202</td>
</tr>
<tr>
<td>2176</td>
<td>Vailltingom, M., H. Pijnenburg</td>
<td>Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods</td>
<td>1999</td>
<td>Journal of Agricultural and Food Chemistry</td>
<td>47(12) 5261-5266</td>
</tr>
<tr>
<td>2177</td>
<td>Valdivia, V., D. Dixia</td>
<td>Situación y perspectivas del maíz en México</td>
<td>2004</td>
<td>UACH</td>
<td></td>
</tr>
<tr>
<td>2178</td>
<td>van der Merwe, F., C. Bezuidenhout</td>
<td>Effects of Cry1Ab Transgenic Maize on Lifecycle and Biomarker Responses of the Earthworm, Eisenia Andrei</td>
<td>2002</td>
<td>Sensors</td>
<td>12(12) 17155-17167</td>
</tr>
<tr>
<td>2179</td>
<td>Vanderschuren, H., D. Heinzm</td>
<td>A cross-sectional study of biotechnology awareness and teaching in European high schools</td>
<td>2006</td>
<td>New biotechnology</td>
<td>27(6) 822-828</td>
</tr>
<tr>
<td>2180</td>
<td>Vegan, J. C., E. Ibarra-Laclette</td>
<td>Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing</td>
<td>2009</td>
<td>BMC genomics</td>
<td>10(1) 299</td>
</tr>
<tr>
<td>2184</td>
<td>Waiblinger, H.-U., M.</td>
<td>In-house and interlaboratory validation of a method for the extraction of DNA from pollen in honey</td>
<td>2012</td>
<td>Journal of Verbraucherschutz und Lebensmittelsicherheit</td>
<td>7(3) 243-254</td>
</tr>
<tr>
<td>2186</td>
<td>Wan, P., Y. Huang</td>
<td>The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China</td>
<td>2006</td>
<td>PLoS One</td>
<td>7(7) e42004</td>
</tr>
<tr>
<td>2187</td>
<td>Wegier, A., A. Příbyrová-Nelson</td>
<td>Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin</td>
<td>2011</td>
<td>Molecular ecology</td>
<td>20(19) 4182-4194.</td>
</tr>
<tr>
<td>2188</td>
<td>Wickson, F. and B. Wynne</td>
<td>The anglerfish deception</td>
<td>2012</td>
<td>EMBO reports</td>
<td>13(2) 100-105.</td>
</tr>
<tr>
<td>2189</td>
<td>Wilhelm, R., L. Beissner</td>
<td>Concept for the realisation of a GMO monitoring in Germany</td>
<td>2003</td>
<td>Federal Biological Research Centre for Agriculture and Forestry</td>
<td></td>
</tr>
<tr>
<td>2190</td>
<td>Wilhelm, R., O. Santvido</td>
<td>Monitoring the commercial cultivation of BT maize in Europe: conclusions and recommendations for future monitoring practice</td>
<td>2010</td>
<td>Environmental biosafety research</td>
<td>8(4) 219</td>
</tr>
<tr>
<td>2192</td>
<td>Wolfi, J. D., R. Keese</td>
<td>Problem formulation in the environmental risk assessment for genetically modified plants</td>
<td>2010</td>
<td>Transgenic research</td>
<td>19(3) 425-436</td>
</tr>
<tr>
<td>2193</td>
<td>Wu, F.</td>
<td>Mycotoxin reduction in Bt corn: potential economic, health, and regulatory impacts</td>
<td>2006</td>
<td>Transgenic research</td>
<td>15(3) 277-289</td>
</tr>
<tr>
<td>2194</td>
<td>Yamanouchi, K.</td>
<td>Regulatory considerations in the development and application of biotechnology in Japan. Revue scientifique et technique-Office international des pizooties</td>
<td>2005</td>
<td></td>
<td>24(1) 109</td>
</tr>
<tr>
<td>2195</td>
<td>Yamazaki, M., M. I. Tenaillon</td>
<td>A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement</td>
<td>2005</td>
<td>The Plant Cell Online</td>
<td>17(11) 2859-2872</td>
</tr>
<tr>
<td>2197</td>
<td>Zářghart, W., A. Benzler</td>
<td>Determining indicators, methods and sites for monitoring potential adverse effects of genetically modified plants to the environment: the legal and conceptual framework for</td>
<td>2008</td>
<td>Euphytica</td>
<td>164(3) 845-852.</td>
</tr>
<tr>
<td>2198</td>
<td>Zeevi, V., A. Tovkach</td>
<td>Increasing cloning possibilities using artificial zinc finger nucleases</td>
<td>2008</td>
<td>Proceedings of the National Academy of Sciences</td>
<td>105(35) 12785-12790</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Year(s)</td>
<td>Title</td>
<td>Journal</td>
<td>Number</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>2014</td>
<td>Raybould, A. & Poppy, G.M.</td>
<td>2012</td>
<td>Commercializing genetically modified crops under EU regulations: objectives and barriers.</td>
<td>GM Crops and Food: Biotechnology in Agriculture and the Food Chain</td>
<td>3</td>
</tr>
<tr>
<td>2010</td>
<td>National Academy of sciences</td>
<td>1977</td>
<td>Research with recombinant DNA: An Academy Forum.</td>
<td>National Academy of sciences</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>National Academy of sciences</td>
<td>1987</td>
<td>Introduction of recombinant DNA-Engineered organisms into the Environment</td>
<td>National Academy of sciences</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>National Research Council</td>
<td>1987</td>
<td>Agricultural Biotechnology: Strategies for national competitiveness</td>
<td>National Research Council</td>
<td>-</td>
</tr>
<tr>
<td>2014</td>
<td>National Research Council</td>
<td>2002</td>
<td>Environmental effects of transgenic plants: the scope and adequacy of regulation</td>
<td>National Research Council</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>Maxine Singer and Dieter Sol</td>
<td>1973</td>
<td>Guidelines for DNA Hybrid molecules</td>
<td>Science</td>
<td>-</td>
</tr>
<tr>
<td>2016</td>
<td>Nick Allum, Patrick Sturgis, Dimitra Tabourazi</td>
<td>2008</td>
<td>Science knowledge and attitudes across cultures: a meta-analysis</td>
<td>Science</td>
<td>17</td>
</tr>
<tr>
<td>2019</td>
<td>Brossard, D. and J. Shanahan</td>
<td>2012</td>
<td>Public opinion and agricultural biotechnology</td>
<td>The public, the media, and agricultural biotechnology</td>
<td>-</td>
</tr>
<tr>
<td>2020</td>
<td>Brossard, D. and J. Shanahan</td>
<td>2007</td>
<td>Perspectives on communication about agricultural biotechnology</td>
<td>The public, the media, and agricultural biotechnology</td>
<td>-</td>
</tr>
<tr>
<td>2021</td>
<td>Dominique Brossard, Luisa Massaraní, Carla Almeida, Bruno Bays, Emily Tabourazi</td>
<td>2013</td>
<td>Media Frame Building and Culture: Transgenic crops in two Brazilian Newspapers during the “Year of Controversy”</td>
<td>E-Compós</td>
<td>16</td>
</tr>
<tr>
<td>2022</td>
<td>Lawrence Busch</td>
<td>2011</td>
<td>The cacophony of governance</td>
<td>Journal of Experimental Botany</td>
<td>62</td>
</tr>
<tr>
<td>2023</td>
<td>CAC</td>
<td>2008</td>
<td>Principles for the Risk Analysis of Foods Derived from Modern Biotechnology</td>
<td>CAC</td>
<td>-</td>
</tr>
<tr>
<td>2024</td>
<td>Olivier De Schutter and Simon Deakin</td>
<td>2010</td>
<td>Reflexive Governance and the Dilemmas of Social Regulation</td>
<td>European Law Review</td>
<td>28</td>
</tr>
<tr>
<td>2025</td>
<td>EPA</td>
<td>2000</td>
<td>Ricks Characterization Handbook</td>
<td>Alternative Agri-Food Movements and Agri-Food Researchers</td>
<td>75</td>
</tr>
<tr>
<td>2026</td>
<td>Doris Fuchs, Tety Havinga</td>
<td>2011</td>
<td>Actors in private food governance: the legitimacy of retail standards and multistakeholder initiatives with civil society participation</td>
<td>Agric Hum Values</td>
<td>28</td>
</tr>
<tr>
<td>2027</td>
<td>L. Fulponi</td>
<td>2006</td>
<td>Private voluntary standards in the food system: The perspective of major food retailers in OECD countries</td>
<td>Food Policy</td>
<td>31</td>
</tr>
<tr>
<td>2028</td>
<td>George Gaskell*, Sally Stares, Agnieszka Allardt, Nick Allum</td>
<td>2006</td>
<td>Europeans and Biotechnology in 2005: Patterns and Trends</td>
<td>DG Research</td>
<td>-</td>
</tr>
<tr>
<td>2029</td>
<td>Rachel M. Gisselquist</td>
<td>2012</td>
<td>Good Governance as a Concept, and Why This Matters for Development Policy</td>
<td>The Dossiers</td>
<td>-</td>
</tr>
<tr>
<td>ID</td>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Journal/Source</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2230</td>
<td>Rachel M. Gisselquist</td>
<td>2015</td>
<td>what does good governance mean</td>
<td>https://www.wider.unu.edu/publication/what-does-good-governance-mean</td>
<td>-</td>
</tr>
<tr>
<td>2231</td>
<td>Guillaume Guerit, Debattata Sengupta</td>
<td>2009</td>
<td>GM-free private standards and their effects on biosafety decision-making in developing countries</td>
<td>food policy</td>
<td>34</td>
</tr>
<tr>
<td>2232</td>
<td>MAKI HATANAKA AND JASON KONEFAL</td>
<td>2013</td>
<td>Legitimacy and Standard Development in Multi-stakeholder Initiatives: A Case Study of the Leonardo Academy’s Sustainable Agriculture Standard Initiative</td>
<td>international journal of sociology of agriculture</td>
<td>20</td>
</tr>
<tr>
<td>2233</td>
<td>Maki Hatanaka, Carmen Bain, Lawrence Busch</td>
<td>2005</td>
<td>Third-party certification in the global agrifood system</td>
<td>food policy</td>
<td>30</td>
</tr>
<tr>
<td>2234</td>
<td>Steven Henkoff, Bradley J. Till, and Luca Comai</td>
<td>2004</td>
<td>traditional mutagenesis meets functional genomics</td>
<td>Plant Physiology,</td>
<td>135</td>
</tr>
<tr>
<td>2235</td>
<td>Henson S.</td>
<td>2008</td>
<td>the role of public and private standards in regulating international food markets</td>
<td>journal of international agricultural trade and development</td>
<td>4</td>
</tr>
<tr>
<td>2236</td>
<td>Henson S.</td>
<td>2005</td>
<td>Private agri-food standards: Implications for food policy and the agri-food system</td>
<td>food policy</td>
<td>4</td>
</tr>
<tr>
<td>2237</td>
<td>Clare Hinrichs and John Eshleman</td>
<td>2014</td>
<td>Agrifood Movements: Diversity, Aims, and Limits</td>
<td>rural america in a globalizing world</td>
<td>-</td>
</tr>
<tr>
<td>2238</td>
<td>Alan Irwin, Torben Elgaard, Jensen, Kevin E. Jones</td>
<td>2013</td>
<td>The good, the bad and the perfect: Criticizing engagement practice</td>
<td>social studies of science</td>
<td>43</td>
</tr>
<tr>
<td>2239</td>
<td>J. Kazuma</td>
<td>2014</td>
<td>Properly paced? Examining the past and present governance of GMOs in the United States</td>
<td>Innovative Governance Models for Emerging Technologies</td>
<td>-</td>
</tr>
<tr>
<td>2241</td>
<td>Yina Kyndt, Bora Quispe, Hong Zhai, Robert Jarret, Marc Ghistain Qingchang Liu</td>
<td>2015</td>
<td>The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An</td>
<td>National Academic of science of the U.S.A</td>
<td>112</td>
</tr>
<tr>
<td>2242</td>
<td>LUISA MASSARANI, CARMELLO POLINO, CARINA CORTASSA, MARIA EUGENIA FAZIO, ANA</td>
<td>2013</td>
<td>o que pensam os pequenos agricultores da argentina sobre os cultivos geneticamente modificados</td>
<td>ambiente & Sociedade</td>
<td>16</td>
</tr>
<tr>
<td>2243</td>
<td>Kevin Morgan, Terry Marsden, and Jonathan Mundoch</td>
<td>2003</td>
<td>Worlds of Food Place, Power, and Provenance in the Food Chain</td>
<td>Oxford: Oxford university press</td>
<td>-</td>
</tr>
<tr>
<td>2244</td>
<td>Marion Nestle</td>
<td>2003</td>
<td>Safe food</td>
<td>University of California Press</td>
<td>-</td>
</tr>
<tr>
<td>2245</td>
<td>Matthew C. Nisbet, and Dietram A. Scheufele</td>
<td>2009</td>
<td>What's next for science communication? Promising directions and lingering distractions</td>
<td>American Journal Botany</td>
<td>96</td>
</tr>
<tr>
<td>2246</td>
<td>NRC</td>
<td>1996</td>
<td>Understanding Risk: Informing Decisions in a Democratic Society</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2247</td>
<td>NRC</td>
<td>2002</td>
<td>environmental effects of transgenic plants the scope and adequacy</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2248</td>
<td>NRC</td>
<td>2004</td>
<td>biological confinement of genetically engineered organisms</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2249</td>
<td>NRC</td>
<td>2005</td>
<td>decision making for the environment social and behavioral science</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2250</td>
<td>Eileen Abt, Joseph V. Rodricks, Jonathan I. Levy, Lauren Zeise, and Thomas A. Burke</td>
<td>2009</td>
<td>science and decisions advancing risk assessment</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2251</td>
<td>David Ervin</td>
<td>2010</td>
<td>the impact of genetically engineered crops on farm sustainability in the united states</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2252</td>
<td>NRC</td>
<td>2015</td>
<td>Industrialization of Biology: A Roadmap to Accelerate the Advanced Manufacturing of Chemicals</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2253</td>
<td>NRC</td>
<td>2015</td>
<td>Public Engagement on Genetically Modified Organisms: When Science and Citizens Connect: A Workshop Summary</td>
<td>National Academies Press</td>
<td>-</td>
</tr>
<tr>
<td>2254</td>
<td>Oecd</td>
<td>1986</td>
<td>recombinant dna safety considerations</td>
<td>OECD</td>
<td>-</td>
</tr>
<tr>
<td>2255</td>
<td>Robert Paarberg, Carl Pray</td>
<td>2007</td>
<td>Political Actors on the Landscape</td>
<td>AgBioForum</td>
<td>10</td>
</tr>
<tr>
<td>2256</td>
<td>Thomas Reardon, Elizabeth Farina</td>
<td>2001</td>
<td>The rise of private food quality and safety standards: illustrations from Brazil</td>
<td>International Food and AgriBusiness Management Review</td>
<td>4</td>
</tr>
<tr>
<td>2257</td>
<td>Loren H. Rieseberg, and Benjamin K. Blackman</td>
<td>2010</td>
<td>Speciation genes in plants</td>
<td>Annals of Botany</td>
<td>106</td>
</tr>
<tr>
<td>2258</td>
<td>Gene Rowe, Lynn J. Frewer</td>
<td>2005</td>
<td>typology of public engagement mechanisms</td>
<td>science technology & human values</td>
<td>30</td>
</tr>
<tr>
<td>2259</td>
<td>Mary E. Rumph, Jared M. Worful, Jungho Lee, Krishna Kannan, Mary S. Tyler, Dushantsh</td>
<td>2008</td>
<td>Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica</td>
<td>proceedings of the national academy of science of the United States of America</td>
<td>105</td>
</tr>
<tr>
<td>2260</td>
<td>Kristin R. Runge, Domique Brossard, Dietram A. Scheufele, Kathleen M. Rose, Brita J. Larson</td>
<td>2015</td>
<td>OPINION REPORT: PUBLIC OPINION & BIOTECHNOLOGY</td>
<td>Department of Life Sciences Communication University of Wisconsin</td>
<td>-</td>
</tr>
<tr>
<td>ID</td>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>------</td>
<td>---</td>
<td>--------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2261</td>
<td>Scheufele, D.A.</td>
<td>2006</td>
<td>Messages and heuristics how audiences form attitudes about emerging technologies</td>
<td>Engaging Science</td>
<td></td>
</tr>
<tr>
<td>2262</td>
<td>Greetje Schouten, Pieter Leroy, Pieter Glasbergen</td>
<td>2012</td>
<td>On the deliberative capacity of private multi-stakeholder governance: The Roundtables on Responsible Soy and Sustainable Palm Oil</td>
<td>Ecological Economics</td>
<td>83</td>
</tr>
<tr>
<td>2264</td>
<td>Slovic, P., ed.</td>
<td>2000</td>
<td>The Perception of Risk</td>
<td>Earthscan</td>
<td></td>
</tr>
<tr>
<td>2265</td>
<td>Ned Stafford</td>
<td>2005</td>
<td>Scientists raise concerns about the new law's potential effects on research</td>
<td>The Scientists</td>
<td></td>
</tr>
<tr>
<td>2266</td>
<td>Anne Tallontire, Maggie Opondo, Valerie Nelson</td>
<td>2011</td>
<td>Beyond the Vertical? Using value chains and governance as a framework to analyse private standards initiatives in agri-food chains</td>
<td>Agriculture and Human Values</td>
<td>28</td>
</tr>
<tr>
<td>2267</td>
<td>John Walls, Tim O'Riordan, Tom Hoplick Jones, Jörg Nörtner</td>
<td>2005</td>
<td>The meta-governance of risk and new technologies: GM crops and mobile telephones</td>
<td>Journal of RIKS</td>
<td>8</td>
</tr>
</tbody>
</table>

Actualización al 6 de julio de 2106
Con el apoyo de la QAB. Michelle Cisneros Valdespino.